-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolov8_segment_with_annotations.py
110 lines (88 loc) · 3.95 KB
/
yolov8_segment_with_annotations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import json
import numpy as np
import os
import cv2
from ultralytics import YOLO
from pycocotools import mask as mask_util
# Load YOLO segmentation model (yolov8n-seg.pt)
model = YOLO('yolov8n-seg.pt')
# Define paths for images, saving segmented images, and annotations
image_folder = os.path.join('data', 'filtered_imgs')
save_folder = os.path.join('data', 'segmented_imgs')
annotation_file = os.path.join('data', 'annotations_coco.json')
# Ensure the save folder exists
if not os.path.exists(save_folder):
os.makedirs(save_folder)
# Initialize annotations dictionary in COCO format
annotations = {
"images": [],
"annotations": [],
"categories": [
{"id": 1, "name": "dog"},
{"id": 2, "name": "cat"}
]
}
annotation_id = 1
# Function to convert numpy array or bytes to serializable format
def convert_to_serializable(obj):
if isinstance(obj, np.ndarray):
return obj.tolist() # Convert numpy array to a Python list
if isinstance(obj, bytes):
return obj.decode() # Decode bytes to string
raise TypeError(f"Object of type {type(obj)} is not JSON serializable")
# Process each image in the folder
for image_id, image_name in enumerate(os.listdir(image_folder)):
# Full path to the image
image_path = os.path.join(image_folder, image_name)
# Run the image through the model
results = model(image_path)
# Load the image with OpenCV
img = cv2.imread(image_path)
height, width, _ = img.shape
# Add image info to the COCO-style annotations
annotations["images"].append({
"id": image_id,
"file_name": image_name,
"height": height,
"width": width
})
# Loop through each detected object
for result in results:
if result.masks: # Check if masks exist in the predictions
for mask, box in zip(result.masks.data, result.boxes):
class_id = int(box.cls[0]) # Get the class ID
# Check if it's a dog or cat (16 for dog, 17 for cat)
if class_id in [16, 17]:
# Set the category ID (1 for dog, 2 for cat)
category_id = 1 if class_id == 16 else 2
# Convert mask to numpy array
mask = mask.cpu().numpy()
# Resize mask to the image size
mask_resized = cv2.resize(mask, (width, height))
# Apply the mask to the image (visualization purposes)
img[mask_resized > 0.5] = [0, 255, 0] # Green color for segmented areas
# Use pycocotools to encode the mask into RLE format
rle = mask_util.encode(np.asfortranarray((mask_resized > 0.5).astype(np.uint8)))
# Get bounding box coordinates and convert to COCO format
x1, y1, x2, y2 = map(int, box.xyxy[0]) # Bounding box coordinates
bbox = [x1, y1, x2 - x1, y2 - y1] # COCO format: [x_min, y_min, width, height]
# Convert mask area to a serializable float value
area = float(np.sum(mask_resized))
# Add the annotation in COCO format
annotations["annotations"].append({
"id": annotation_id,
"image_id": image_id,
"category_id": category_id,
"segmentation": rle, # Store the RLE-encoded mask
"bbox": bbox,
"area": area,
"iscrowd": 0 # Set 'iscrowd' to 0 for individual objects
})
annotation_id += 1
# Save the image with the applied mask
save_path = os.path.join(save_folder, image_name)
cv2.imwrite(save_path, img)
# Save the COCO annotations to a JSON file
with open(annotation_file, 'w') as f:
json.dump(annotations, f, default=convert_to_serializable)
print("Segmentation completed and annotations saved in COCO format")