We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
import keras def get_model(): model = keras.Sequential() model.add(keras.layers.Dense(1)) model.compile( optimizer=keras.optimizers.RMSprop(learning_rate=0.1), loss="mean_squared_error", metrics=["mean_absolute_error"], ) return model (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() x_train = x_train.reshape(-1, 784).astype("float32") / 255.0 x_test = x_test.reshape(-1, 784).astype("float32") / 255.0 x_train = x_train[:1000] y_train = y_train[:1000] x_test = x_test[:1000] y_test = y_test[:1000] class CustomCallback(keras.callbacks.Callback): def __init__(self, x, y): super().__init__() self.x = x self.y = y def on_epoch_end(self, epoch, logs=None): y_pred = self.model.predict(self.x, verbose=0) score = self.model.compute_metrics(self.x, self.y, y_pred, sample_weight=None) print() print(score) model = get_model() model.fit( x_train, y_train, batch_size=256, epochs=5, verbose=1, callbacks=[CustomCallback(x_train, y_train)], )
Epoch 1/5 1/4 ━━━━━━━━━━━━━━━━━━━━ 1s 526ms/step - loss: 25.3436 - mean_absolute_error: 4.2441 {'loss': 242.523193359375, 'mean_absolute_error': 6.016280174255371} 4/4 ━━━━━━━━━━━━━━━━━━━━ 1s 57ms/step - loss: 256.4755 - mean_absolute_error: 10.3880 Epoch 2/5 1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 27ms/step - loss: 6.6658 - mean_absolute_error: 2.1646 {'loss': 6.03378438949585, 'mean_absolute_error': 1.8999731540679932} 4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 40ms/step - loss: 6.2043 - mean_absolute_error: 2.0708 Epoch 3/5 1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 24ms/step - loss: 4.1691 - mean_absolute_error: 1.6324 {'loss': 4.564587593078613, 'mean_absolute_error': 1.7218464612960815} 4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 42ms/step - loss: 4.4746 - mean_absolute_error: 1.7039 Epoch 4/5 1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 25ms/step - loss: 4.4333 - mean_absolute_error: 1.7299 {'loss': 4.227972030639648, 'mean_absolute_error': 1.6317805051803589} 4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 43ms/step - loss: 4.2346 - mean_absolute_error: 1.6612 Epoch 5/5 1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 24ms/step - loss: 3.7971 - mean_absolute_error: 1.5549 {'loss': 5.39981746673584, 'mean_absolute_error': 2.682666063308716} 4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 42ms/step - loss: 4.6834 - mean_absolute_error: 1.7220 <keras.src.callbacks.history.History at 0x7fa5642bba60>
Epoch 1/5 1/4 ━━━━━━━━━━━━━━━━━━━━ 1s 526ms/step - loss: 25.3436 - mean_absolute_error: 4.2441 {'loss': 242.523193359375, 'mean_absolute_error': 6.016280174255371} 4/4 ━━━━━━━━━━━━━━━━━━━━ 1s 57ms/step - loss: 256.4755 - mean_absolute_error: 10.3880
The text was updated successfully, but these errors were encountered:
The loss and metrics displayed in progress bar is for each batch or mini-batch, where as the output in next line is for each epoch.
Sorry, something went wrong.
ok.
Now, if we do this, then I should able to get them matched.
x_train = x_train[:256] y_train = y_train[:256] x_test = x_test[:256] y_test = y_test[:256] model = get_model() model.fit( x_train, y_train, batch_size=256, epochs=5, verbose=1, callbacks=[CustomCallback(x_train, y_train)], )
Epoch 1/5 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 405ms/step - loss: 25.9250 - mean_absolute_error: 4.1543 {'loss': 25.925048828125, 'mean_absolute_error': 16.05439567565918} 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 490ms/step - loss: 25.9250 - mean_absolute_error: 4.1543
The loss get matched, but why not metrics?
mehtamansi29
No branches or pull requests
The text was updated successfully, but these errors were encountered: