You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
100%|██████████████████████████████████████| 4.67G/4.67G [04:30<00:00, 18.5MB/s]
/home/asheple2/.local/lib/python3.9/site-packages/keras/src/models/model.py:391: UserWarning: Layer InputLayer does not have a quantize method implemented.
warnings.warn(str(e))
/home/asheple2/.local/lib/python3.9/site-packages/keras/src/models/model.py:391: UserWarning: Layer RMSNormalization does not have a quantize method implemented.
warnings.warn(str(e))
/home/asheple2/.local/lib/python3.9/site-packages/keras/src/models/model.py:391: UserWarning: Layer RotaryEmbedding does not have a quantize method implemented.
warnings.warn(str(e))
/home/asheple2/.local/lib/python3.9/site-packages/keras/src/models/model.py:391: UserWarning: Layer Softmax does not have a quantize method implemented.
warnings.warn(str(e))
/home/asheple2/.local/lib/python3.9/site-packages/keras/src/models/model.py:391: UserWarning: Layer Dropout does not have a quantize method implemented.
warnings.warn(str(e))
When training, I get this output after the first epoch:
Hi @ashep29 -
The warnings you are seeing related to quantize method indicates that certain layers (like InputLayer, RMSNormalization, RotaryEmbedding, etc.) don't support quantization So, you can safely ignore these warnings. Assert Warning can also be ignored if the training seems fine. However, if you notice any instability in model performance or training failure, could you please provide details about your training setup ?Thanks!
@ashep29, Thanks for the update. Could you please share details of your training loop (batch size, epochs, optimizer), the dataset you’re using and your environment.
Are these warnings something to be concerned about?
preprocessor = keras_hub.models.GemmaCausalLMPreprocessor.from_preset(
"gemma_1.1_instruct_2b_en", sequence_length=256
)
gemma_lm = keras_hub.models.GemmaCausalLM.from_preset(
"gemma_1.1_instruct_2b_en", preprocessor=preprocessor
)
gemma_lm.quantize("int8")
gemma_lm.backbone.enable_lora(rank=4)
gemma_lm.summary()
Downloading from https://www.kaggle.com/api/v1/models/keras/gemma/keras/gemma_1.1_instruct_2b_en/4/download/config.json...
100%|███████████████████████████████████████████| 785/785 [00:00<00:00, 128kB/s]
Downloading from https://www.kaggle.com/api/v1/models/keras/gemma/keras/gemma_1.1_instruct_2b_en/4/download/tokenizer.json...
100%|██████████████████████████████████████████| 591/591 [00:00<00:00, 94.3kB/s]
Downloading from https://www.kaggle.com/api/v1/models/keras/gemma/keras/gemma_1.1_instruct_2b_en/4/download/assets/tokenizer/vocabulary.spm...
100%|██████████████████████████████████████| 4.04M/4.04M [00:01<00:00, 2.20MB/s]
normalizer.cc(51) LOG(INFO) precompiled_charsmap is empty. use identity normalization.
Downloading from https://www.kaggle.com/api/v1/models/keras/gemma/keras/gemma_1.1_instruct_2b_en/4/download/model.weights.h5...
100%|██████████████████████████████████████| 4.67G/4.67G [04:30<00:00, 18.5MB/s]
/home/asheple2/.local/lib/python3.9/site-packages/keras/src/models/model.py:391: UserWarning: Layer InputLayer does not have a
quantize
method implemented.warnings.warn(str(e))
/home/asheple2/.local/lib/python3.9/site-packages/keras/src/models/model.py:391: UserWarning: Layer RMSNormalization does not have a
quantize
method implemented.warnings.warn(str(e))
/home/asheple2/.local/lib/python3.9/site-packages/keras/src/models/model.py:391: UserWarning: Layer RotaryEmbedding does not have a
quantize
method implemented.warnings.warn(str(e))
/home/asheple2/.local/lib/python3.9/site-packages/keras/src/models/model.py:391: UserWarning: Layer Softmax does not have a
quantize
method implemented.warnings.warn(str(e))
/home/asheple2/.local/lib/python3.9/site-packages/keras/src/models/model.py:391: UserWarning: Layer Dropout does not have a
quantize
method implemented.warnings.warn(str(e))
When training, I get this output after the first epoch:
W0000 00:00:1742807763.942093 62622 assert_op.cc:38] Ignoring Assert operator compile_loss/sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/assert_equal_1/Assert/Assert
The text was updated successfully, but these errors were encountered: