-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
168 lines (147 loc) · 5.25 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import tkinter as tk
import pickle
import pandas as pd
# Function to load model
def load_model(filename):
with open(filename, 'rb') as file:
model = pickle.load(file)
return model
# Function to unload model
def unload_model(model):
del model
# Load models that are lightweight or used frequently at the start
decision_tree = load_model('trained_model/decision_tree.pickle')
ridge = load_model('trained_model/ridge.pickle')
ols = load_model('trained_model/ols.pickle')
lasso = load_model('trained_model/lasso.pickle')
# Function to create a DataFrame from user input
def get_input_data():
province = province_entry.get()
max_temp = float(max_entry.get())
min_temp = float(min_entry.get())
wind_speed = float(wind_entry.get())
wind_direction = wind_d_entry.get()
rainfall = float(rain_entry.get())
cloud_cover = float(cloud_entry.get())
pressure = float(pressure_entry.get())
date = date_entry.get()
# Create a dictionary from user input
data = {
"province": [province],
"max": [max_temp],
"min": [min_temp],
"wind": [wind_speed],
"wind_d": [wind_direction],
"rain": [rainfall],
"cloud": [cloud_cover],
"pressure": [pressure],
"date": [date]
}
# Create a DataFrame
df = pd.DataFrame(data)
df['date'] = pd.to_datetime(df['date'])
return df
# Functions for each model prediction
def predict_dt():
df = get_input_data()
dt_prediction = decision_tree.predict(df)
result_label.config(text=f"Decision Tree: {dt_prediction[0]}")
def predict_vr():
df = get_input_data()
voting_regressor = load_model('trained_model/voting_regressor.pickle')
vr_prediction = voting_regressor.predict(df)
unload_model(voting_regressor)
result_label.config(text=f"Voting Regressor: {vr_prediction[0]}")
def predict_st():
df = get_input_data()
stacking_tree = load_model('trained_model/stacking_tree.pickle')
st_prediction = stacking_tree.predict(df)
unload_model(stacking_tree)
result_label.config(text=f"Stacking Tree: {st_prediction[0]}")
def predict_ridge():
df = get_input_data()
ridge_prediction = ridge.predict(df)
result_label.config(text=f"Ridge: {ridge_prediction[0]}")
def predict_rf():
df = get_input_data()
random_forest = load_model('trained_model/random_forest.pickle')
rf_prediction = random_forest.predict(df)
unload_model(random_forest)
result_label.config(text=f"Random Forest: {rf_prediction[0]}")
def predict_ols():
df = get_input_data()
ols_prediction = ols.predict(df)
result_label.config(text=f"OLS: {ols_prediction[0]}")
def predict_lasso():
df = get_input_data()
lasso_prediction = lasso.predict(df)
result_label.config(text=f"Lasso: {lasso_prediction[0]}")
# Load models that are lightweight or used frequently at the start
with open('trained_model/decision_tree.pickle', 'rb') as dt_file:
decision_tree = pickle.load(dt_file)
with open('trained_model/ridge.pickle', 'rb') as ridge_file:
ridge = pickle.load(ridge_file)
with open('trained_model/ols.pickle', 'rb') as ols_file:
ols = pickle.load(ols_file)
with open('trained_model/lasso.pickle', 'rb') as lasso_file:
lasso = pickle.load(lasso_file)
# Create the GUI
root = tk.Tk()
root.title("Weather Model Predictor")
# Create input fields
province_label = tk.Label(root, text="Province:")
province_entry = tk.Entry(root)
max_label = tk.Label(root, text="Max Temperature:")
max_entry = tk.Entry(root)
min_label = tk.Label(root, text="Min Temperature:")
min_entry = tk.Entry(root)
wind_label = tk.Label(root, text="Wind Speed:")
wind_entry = tk.Entry(root)
wind_d_label = tk.Label(root, text="Wind Direction:")
wind_d_entry = tk.Entry(root)
rain_label = tk.Label(root, text="Rainfall:")
rain_entry = tk.Entry(root)
cloud_label = tk.Label(root, text="Cloud Cover:")
cloud_entry = tk.Entry(root)
pressure_label = tk.Label(root, text="Pressure:")
pressure_entry = tk.Entry(root)
date_label = tk.Label(root, text="Date (YYYY-MM-DD):")
date_entry = tk.Entry(root)
# Create prediction buttons for each model
predict_dt_button = tk.Button(root, text="Predict Decision Tree", command=predict_dt)
predict_vr_button = tk.Button(root, text="Predict Voting Regressor", command=predict_vr)
predict_st_button = tk.Button(root, text="Predict Stacking Tree", command=predict_st)
predict_ridge_button = tk.Button(root, text="Predict Ridge", command=predict_ridge)
predict_rf_button = tk.Button(root, text="Predict Random Forest", command=predict_rf)
predict_ols_button = tk.Button(root, text="Predict OLS", command=predict_ols)
predict_lasso_button = tk.Button(root, text="Predict Lasso", command=predict_lasso)
# Create result label
result_label = tk.Label(root, text="")
# Pack widgets
province_label.pack()
province_entry.pack()
max_label.pack()
max_entry.pack()
min_label.pack()
min_entry.pack()
wind_label.pack()
wind_entry.pack()
wind_d_label.pack()
wind_d_entry.pack()
rain_label.pack()
rain_entry.pack()
cloud_label.pack()
cloud_entry.pack()
pressure_label.pack()
pressure_entry.pack()
date_label.pack()
date_entry.pack()
predict_dt_button.pack()
predict_vr_button.pack()
predict_st_button.pack()
predict_ridge_button.pack()
predict_rf_button.pack()
predict_ols_button.pack()
predict_lasso_button.pack()
result_label.pack()
root.mainloop()