-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_val_test_features.py
116 lines (85 loc) · 4.13 KB
/
extract_val_test_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import argparse
import os
import yaml
import pickle
import numpy as np
import random
from tqdm import tqdm
import torch
from torchinfo import summary
from models.load_model import load_model
from utils.load_dataset import load_dataset
from utils.data_utils import class_maps
def main(config):
seed = 10
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print('connected to device: {}'.format(device))
model = load_model(config, device)
summary(model, input_size=(config['BATCH_SIZE'], config['INP_DIM'], config['RESOLUTION'], config['RESOLUTION']))
# load view datasets
camus_config = 'resnet_mcdo_camus_2_class'
with open('config/' + camus_config + '.yaml') as f:
camus_config = yaml.load(f, yaml.FullLoader)
mstr_config = 'resnet_mcdo_mstr_11_class'
with open('config/' + mstr_config + '.yaml') as f:
mstr_config = yaml.load(f, yaml.FullLoader)
wase_config = 'resnet_mcdo_wase_8_class'
with open('config/' + wase_config + '.yaml') as f:
wase_config = yaml.load(f, yaml.FullLoader)
stg_config = 'resnet_mcdo_stg_4_class'
with open('config/' + stg_config + '.yaml') as f:
stg_config = yaml.load(f, yaml.FullLoader)
mahi_config = 'resnet_mcdo_mahi_15_class'
with open('config/' + mahi_config + '.yaml') as f:
mahi_config = yaml.load(f, yaml.FullLoader)
uoc_config = 'resnet_mcdo_uoc_15_class'
with open('config/' + uoc_config + '.yaml') as f:
uoc_config = yaml.load(f, yaml.FullLoader)
for dataset_id, dataset_config in enumerate(
[wase_config, camus_config, mstr_config, stg_config, mahi_config, uoc_config]):
print('Evaluating {}'.format(dataset_config['DATASET']))
class_map = class_maps(dataset_id)
dataset_config['TRAIN_TRANSFORMS'] = False
(_, _, _), (_, val_dataset, test_dataset) = load_dataset(dataset_config)
for dataset, set_str in [[val_dataset, 'val'], [test_dataset, 'test']]:
labels_npy = np.zeros(len(dataset), dtype=np.int32)
nmd_npy = np.zeros((len(dataset), 15616), dtype=np.float32)
features_npy = np.zeros((len(dataset), 4, 512), dtype=np.float32)
logits_npy = np.zeros((len(dataset), 25), dtype=np.float32)
for i in tqdm(range(len(dataset))):
X, Y = dataset[i]
X = X.unsqueeze(0).to(device)
Y = class_map[int(Y.numpy())]
nmd, features, logits = model(X)
nmd_npy[i, :] = nmd[0, :].cpu().numpy()
features_npy[i, :, :] = torch.cat(features, dim=0).cpu().numpy()
logits_npy[i, :] = torch.cat(logits, dim=1).squeeze(0).cpu().numpy()
labels_npy[i] = Y
np.save(config['DATA_ROOT'] + '{}_feat/{}/labels.npy'.format(
dataset_config['DATASET'].upper(), set_str), labels_npy)
np.save(config['DATA_ROOT'] + '{}_feat/{}/nmd.npy'.format(
dataset_config['DATASET'].upper(), set_str), nmd_npy)
np.save(config['DATA_ROOT'] + '{}_feat/{}/features.npy'.format(
dataset_config['DATASET'].upper(), set_str), features_npy)
np.save(config['DATA_ROOT'] + '{}_feat/{}/logits.npy'.format(
dataset_config['DATASET'].upper(), set_str), logits_npy)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--DATA_ROOT', type=str)
parser.add_argument('--CONFIG', type=str)
config = parser.parse_args()
cmd_config = vars(config)
# load model and training configs
with open('config/' + cmd_config['CONFIG'] + '.yaml') as f:
yaml_config = yaml.load(f, yaml.FullLoader)
config = yaml_config
config.update(cmd_config) # command line args overide yaml
print('config: ', config)
main(config)