@@ -32,14 +32,14 @@ Learn Deep Learning with PyTorch
32
32
- Chapter 4: 卷积神经网络
33
33
- [ PyTorch 中的卷积模块] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter4_CNN/basic_conv.ipynb )
34
34
- [ 批标准化,batch normalization] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter4_CNN/batch-normalization.ipynb )
35
- - [ 使用重复元素的深度网络,VGG] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_CNN /vgg.ipynb )
36
- - [ 更加丰富化结构的网络,GoogLeNet] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_CNN /googlenet.ipynb )
37
- - [ 深度残差网络,ResNet] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_CNN /resnet.ipynb )
38
- - [ 稠密连接的卷积网络,DenseNet] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_CNN /densenet.ipynb )
35
+ - [ 使用重复元素的深度网络,VGG] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter4_CNN /vgg.ipynb )
36
+ - [ 更加丰富化结构的网络,GoogLeNet] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter4_CNN /googlenet.ipynb )
37
+ - [ 深度残差网络,ResNet] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter4_CNN /resnet.ipynb )
38
+ - [ 稠密连接的卷积网络,DenseNet] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter4_CNN /densenet.ipynb )
39
39
- 更好的训练卷积网络
40
- - [ 数据增强] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_CNN /data-augumentation.ipynb )
41
- - [ 正则化] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_CNN /regularization.ipynb )
42
- - [ 学习率衰减] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_CNN /lr-decay.ipynb )
40
+ - [ 数据增强] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter4_CNN /data-augumentation.ipynb )
41
+ - [ 正则化] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter4_CNN /regularization.ipynb )
42
+ - [ 学习率衰减] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter4_CNN /lr-decay.ipynb )
43
43
44
44
- Chapter 5: 循环神经网络
45
45
- LSTM 和 GRU
@@ -63,7 +63,7 @@ Learn Deep Learning with PyTorch
63
63
- [ RMSProp] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter6_PyTorch-Advances/optimizer/rmsprop.ipynb )
64
64
- [ Adadelta] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter6_PyTorch-Advances/optimizer/adadelta.ipynb )
65
65
- [ Adam] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter6_PyTorch-Advances/optimizer/adam.ipynb )
66
- - [ 灵活的数据读取介绍] ( )
66
+ - [ 灵活的数据读取介绍] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter6_PyTorch-Advances/data-io.ipynb )
67
67
- autograd.function 的介绍
68
68
- 数据并行和多 GPU
69
69
- PyTorch 的分布式应用
@@ -72,7 +72,7 @@ Learn Deep Learning with PyTorch
72
72
73
73
### part2: 深度学习的应用
74
74
- Chapter 8: 计算机视觉
75
- - [ Fine-tuning: 通过微调进行迁移学习] ( )
75
+ - [ Fine-tuning: 通过微调进行迁移学习] ( https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter7_Computer-Vision/fine-tune.ipynb )
76
76
- 语义分割: 通过 FCN 实现像素级别的分类
77
77
- Neural Transfer: 通过卷积网络实现风格迁移
78
78
- Deep Dream: 探索卷积网络眼中的世界
0 commit comments