-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathUtil.cpp
132 lines (113 loc) · 2.79 KB
/
Util.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#include "Util.h"
vector<string> split(string line, char delim) {
string temp = "";
vector<string> result;
for (unsigned int i = 0; i < line.size(); i++) {
if (line[i] != delim) {
temp += line[i];
}
else {
result.push_back(temp);
temp = "";
}
}
if ("" != temp) {
result.push_back(temp);
}
return result;
}
void readRawDataFromCsv(string fileName, vector<vector<double> > &samples, vector<uint> &labels) {
const char delim = '\t';
string line;
ifstream dataFile(fileName.c_str());
if (!dataFile.is_open()) {
cout << "File:" + fileName + " open failed" << endl;
exit(-1);
}
while (getline(dataFile, line)) {
vector<string> features = split(line, delim);
vector<double> sample;
for (uint j = 0; j < features.size(); j++) {
if (j < features.size() - 1) {
sample.push_back(atof(features[j].c_str()));
}
else {
labels.push_back(atoi(features[j].c_str()));
}
}
samples.push_back(sample);
}
}
void printVector2D(vector<vector<double> > twodArray) {
for (uint i = 0; i < twodArray.size(); i++) {
for (uint j = 0; j < twodArray[0].size(); j++) {
cout << twodArray[i][j] << '\t';
}
cout << endl;
}
}
void printVector1D(vector<uint> oneDArray) {
for (uint i = 0; i< oneDArray.size(); i++) {
cout << oneDArray[i] << endl;
}
}
void printData(vector<vector<double> > samples, vector<uint> labels) {
printVector2D(samples);
printVector1D(labels);
}
double sigmoid(double x) {
return double(1.0 / (1 + exp(-x)));
}
void gradientDescent(
vector<double> &w,
double learnRate,
const vector<vector<double> > &samples,
const vector<uint> &labels,
uint maxIterCnt,
double eps
)
{
for (uint i = 0; i < maxIterCnt; i++) {
vector<double> predictVals(samples.size(), 0.0);
double originVal = 0.0, preVal = 0.0;
for (uint i = 0; i < samples.size(); i++) {
double sum = 0.0;
for (uint j = 0; j < samples[0].size(); j++) {
sum += w[j] * samples[i][j];
}
double p = sigmoid(sum);
preVal += labels[i] * log(p) + (1 - labels[i]) * log(1 - p);
predictVals[i] = p;
}
if (fabs(originVal - preVal) < eps) {
break;
}
originVal = preVal;
for (uint j = 0; j < samples[0].size(); j++) {
double gradient = 0.0;
for (uint i = 0; i < samples.size(); i++) {
gradient += (predictVals[i] - labels[i]) * samples[i][j];
}
w[j] += learnRate * gradient / samples.size();
}
}
}
void stochasticGradientDescent(
vector<double> &w,
double learnRate,
const vector<vector<double> > &samples,
const vector<uint> &labels,
uint maxIterCnt,
double eps
) {
for (uint i = 0; i < maxIterCnt; i++) {
vector<double> predictVals(samples.size(), 0.0);
for (uint i = 0; i < samples.size(); i++) {
double sum = 0.0;
for (uint j = 0; j < samples[0].size(); j++) {
sum += w[j] * samples[i][j];
}
predictVals[i] = sigmoid(sum);
}
}
}