|
| 1 | +MAX = 1024 |
| 2 | + |
| 3 | + |
| 4 | +# Linear time sorting algorithm |
| 5 | +def count_sort(arr): |
| 6 | + |
| 7 | + count, sorted_arr = [0 for i in range( |
| 8 | + MAX + 1)], [0 for i in range(len(arr))] |
| 9 | + |
| 10 | + # Make a hash |
| 11 | + for i in range(len(arr)): |
| 12 | + count[arr[i]] += 1 |
| 13 | + |
| 14 | + # count frequency |
| 15 | + for i in range(1, MAX + 1): |
| 16 | + count[i] += count[i - 1] |
| 17 | + |
| 18 | + # a simple math to new position of element in sorted array |
| 19 | + for i in range(len(arr)): |
| 20 | + sorted_arr[count[arr[i]] - 1] = arr[i] |
| 21 | + count[arr[i]] -= 1 |
| 22 | + |
| 23 | + return sorted_arr |
| 24 | + |
| 25 | + |
| 26 | +# Stable algorithm for count sort |
| 27 | +def stable_count_sort(arr): |
| 28 | + |
| 29 | + count, sorted_arr = [0 for i in range( |
| 30 | + MAX + 1)], [0 for i in range(len(arr))] |
| 31 | + |
| 32 | + for i in range(len(arr)): |
| 33 | + count[arr[i]] += 1 |
| 34 | + |
| 35 | + for i in range(1, MAX + 1): |
| 36 | + count[i] += count[i - 1] |
| 37 | + |
| 38 | + # traverse reverse for stability |
| 39 | + for i in range(len(arr) - 1, -1, -1): |
| 40 | + sorted_arr[count[arr[i]] - 1] = arr[i] |
| 41 | + count[arr[i]] -= 1 |
| 42 | + |
| 43 | + return sorted_arr |
| 44 | + |
| 45 | + |
| 46 | +# Driver Program to show the implementation |
| 47 | +lst = [] |
| 48 | +size = int(input("Enter size of the list : ")) |
| 49 | +for i in range(size): |
| 50 | + elements = int(input("Enter an element : ")) |
| 51 | + lst.append(elements) |
| 52 | +print(stable_count_sort(lst)) |
0 commit comments