-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathRed-Black-Tree.c
252 lines (225 loc) · 7.36 KB
/
Red-Black-Tree.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
// This is an example for Red Black tree
// 2021/11/29
// reference:
// https://josephjsf2.github.io/data/structure/and/algorithm/2020/04/28/red-black-tree-part-1.html
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef enum { red, black } color_t;
typedef struct treeNode {
void* element;
struct treeNode* left;
struct treeNode* right;
struct treeNode* parent;
color_t color;
} TreeNode;
// implement your own comapre function
// return 1 if el1 is less than el2
typedef int (*Less_func)(void* el1, void* el2);
typedef struct rbTree {
TreeNode* root;
Less_func less;
void (*insert)(struct rbTree* this, void* element);
} RBTree;
// ...N ..L.
// .L.. => ...N
// ...R ..R.
// N = node
// L = tmpLeft
// R = tmpLeftRight
void treeNode_rightRotation(RBTree* tree, TreeNode* node) {
TreeNode* tmpLeftRight = (node->left) ? node->left->right : node->left;
TreeNode* tmpLeft = node->left;
node->left = tmpLeftRight;
if (tmpLeftRight) {
tmpLeftRight->parent = node;
}
if (!node->parent) {
tree->root = node;
} else if (node->parent->left == node) {
node->parent->left = tmpLeft;
} else {
node->parent->right = tmpLeft;
}
tmpLeft->parent = node->parent;
tmpLeft->right = node;
node->parent = tmpLeft;
}
// .N.. ..R.
// ..R. => .N..
// .L.. ..L.
// N = node
// L = tmpLeft
// R = tmpLeftRight
void treeNode_leftRotation(RBTree* tree, TreeNode* node) {
TreeNode* tmpRightLeft = (node->right) ? node->right->left : node->right;
TreeNode* tmpRight = node->right;
node->right = tmpRightLeft;
if (tmpRightLeft) {
tmpRightLeft->parent = node;
}
if (!node->parent) {
tree->root = tmpRight;
} else if (node->parent->right == node) {
node->parent->right = tmpRight;
} else {
node->parent->left = tmpRight;
}
tmpRight->parent = node->parent;
tmpRight->left = node;
node->parent = tmpRight;
}
void rbTree_insert(RBTree* tree, void* element) {
TreeNode* x = malloc(sizeof(TreeNode));
x->element = element;
x->left = NULL;
x->right = NULL;
x->parent = NULL;
x->color = red;
if (tree->root) {
TreeNode* current = NULL;
TreeNode* previous = NULL;
// find x's parent
for (current = tree->root; current;) {
previous = current;
if (tree->less(element, current->element)) {
current = current->left;
} else {
current = current->right;
}
}
// insert node `x` at the appropriate position
if (previous && tree->less(element, previous->element)) {
previous->left = x;
} else {
previous->right = x;
}
x->parent = previous;
// check if the tree violate the rule of RBTree
// case1: uncle is red => re-mark the color of nodes
// 1. The color of x's uncle and x's parent should be set to
// black
// 2. x->parent->parent->color = red
// case2: uncle is black and x is L-R
// 1. left rotation(x->parent)
// 2. do case3
// uncle is black and x is R-L
// 1. right rotation(x->parent)
// 2. do case3
// case3: uncle is black and x is L-L
// 1. x->parent->parent->color = red
// 2. x->parent->color = black
// 3. right rotation(x->parent->parent)
// uncle is black and x is R-R
// 1. x->parent->parent->color = red
// 2. x->parent->color = black
// 3. left rotation(x->parent->parent)
while (x != tree->root && x->parent && x->parent->color == red) {
TreeNode* parent = x->parent;
TreeNode* grandParent = (parent) ? x->parent->parent : NULL;
TreeNode* uncle = NULL;
if (grandParent && parent == grandParent->left) {
uncle = grandParent->right;
// case 1
if (uncle && uncle->color == red) {
uncle->color = black;
parent->color = black;
grandParent->color = red;
// now focus on grandparent node
x = grandParent;
} else {
// case 2 L-R
if (x == parent->right) {
treeNode_leftRotation(tree, x->parent);
// continue handle as case3
parent = x;
x = parent->parent;
}
// case 3 L-L
grandParent->color = red;
parent->color = black;
treeNode_rightRotation(tree, grandParent);
}
} else if (grandParent) {
uncle = grandParent->left;
// case 1
if (uncle && uncle->color == red) {
uncle->color = black;
parent->color = black;
grandParent->color = red;
// now focus on grandparent node
x = grandParent;
} else {
// case 2 R-L
if (x == parent->left) {
treeNode_rightRotation(tree, x->parent);
// continue handle as case3
parent = x;
x = parent->parent;
}
// case 3 R-R
grandParent->color = red;
parent->color = black;
treeNode_leftRotation(tree, grandParent);
}
}
}
} else {
tree->root = x;
}
tree->root->color = black;
}
// build an empty red black tree
RBTree* __RBTree__(Less_func less) {
RBTree* new = malloc(sizeof(RBTree));
new->root = NULL;
new->less = less;
new->insert = rbTree_insert;
return new;
}
// ----------------------------------------
struct number {
int val;
};
int numberLessFunc(void* el1, void* el2) {
return ((struct number*)el1)->val < ((struct number*)el2)->val;
}
void inorder(TreeNode* root) {
if (root) {
inorder(root->left);
struct number* el = (struct number*)(root->element);
printf("(%d, %s)\n", el->val,
(root->color == red) ? "R" : "B");
if (root->left) {
el = (struct number*)(root->left->element);
printf(" left: (%d)\n", el->val);
} else {
printf(" left: NULL\n");
}
if (root->right) {
el = (struct number*)(root->right->element);
printf(" right: (%d)\n", el->val);
} else {
printf(" right: NULL\n");
}
inorder(root->right);
}
}
int main() {
// Prepare data
struct number list[] = {{10}, {20}, {30}, {40}, {50}, {60}, {70}, {80}};
int list_len = sizeof(list) / sizeof(list[0]);
// Create binary tree
RBTree* tree = __RBTree__(numberLessFunc);
// Put data into the tree
int i;
for (i = 0; i < list_len; i++) {
printf("Round %d\n", i);
tree->insert(tree, list + i);
inorder(tree->root);
printf("---------------------\n");
}
// See the tree
inorder(tree->root);
return 0;
}