-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
117 lines (101 loc) · 3.07 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import streamlit as st
import time
import pickle
import string
import nltk
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
# Ensure required NLTK resources are downloaded
nltk.data.path.append('/app/nltk_data')
nltk.download('punkt', quiet=True)
nltk.download('stopwords', quiet=True)
# Initialize stemmer
ps = PorterStemmer()
# Text preprocessing function
def transform_text(text):
text = text.lower()
text = nltk.word_tokenize(text)
y = []
for i in text:
if i.isalnum():
y.append(i)
text = y[:]
y.clear()
for i in text:
if i not in stopwords.words('english') and i not in string.punctuation:
y.append(i)
text = y[:]
y.clear()
for i in text:
y.append(ps.stem(i))
return " ".join(y)
# Load model and vectorizer (make sure these files exist in the same directory)
try:
tfidf = pickle.load(open('vectorizer.pkl', 'rb'))
model = pickle.load(open('model.pkl', 'rb'))
except FileNotFoundError as e:
st.error(f"Model or vectorizer file not found: {e}")
st.stop()
# Set up Streamlit page configuration at the start
st.set_page_config(
page_title="Email/SMS Spam Classifier",
page_icon="📧",
layout="wide",
initial_sidebar_state="collapsed"
)
# Main content
st.header("Email/SMS Spam Classifier")
st.write("For better results, please paste the complete SMS/EMAIL.")
input_sms = st.text_area("Enter the message")
if st.button('Predict'):
if input_sms.strip() == "":
st.warning("Please enter a message to predict.")
else:
# Show loading spinner
with st.spinner('Predicting...'):
time.sleep(3) # Simulate prediction time
# Preprocess input text
transformed_sms = transform_text(input_sms)
# Vectorize input text
vector_input = tfidf.transform([transformed_sms])
# Predict using the model
result = model.predict(vector_input)[0]
# Display result
if result == 1:
st.header("Spam")
else:
st.header("Not Spam")
# Footer content
st.markdown(
"""
<hr>
<div style="text-align: center;">
<p>Build by Kunal Bandale ⚡</p>
<p>
<a href="https://github.com/kunalbandale" style="text-decoration: none;">GitHub</a> |
<a href="https://www.linkedin.com/in/kunalbandale" style="text-decoration: none;">LinkedIn</a> |
<a href="https://www.kunalbandale.in" style="text-decoration: none;">Website</a>
</p>
</div>
""",
unsafe_allow_html=True
)
# Mobile responsiveness CSS
st.markdown(
"""
<style>
/* Adjust text area height on mobile */
@media (max-width: 600px) {
.stTextArea textarea {
min-height: 100px !important;
}
.css-vfskoc {
flex-direction: column !important;
align-items: center !important;
justify-content: center !important;
}
}
</style>
""",
unsafe_allow_html=True
)