Commit 1b90f03
integration:
## Overview
This PR adds Timbr as a new integration provider to the LangChain
documentation. Timbr is a semantic SQL knowledge graph platform that
enables natural language to SQL query generation using ontology-driven
semantic layers.
The documentation covers:
* Timbr provider overview page with installation instructions
* Integration guide showing usage of Timbr's chains and agents
* Complete setup and configuration examples
* Environment-based configuration support
* Multiple usage patterns: pre-built agent, individual chains, and
manual connector
## Type of change
**Type:** Add new integration documentation
## Related issues/PRs
* Related integration files in langchain-timbr package
* [Timbr
documentation](https://docs.timbr.ai/doc/docs/integration/langchain-sdk/)
## Checklist
- [X] I have read the contributing guidelines
- [X] I have tested my changes locally using make lint_md
- [X] All code examples follow LangChain documentation standards
- [X] I have used root relative paths for internal links
- [ ] I have updated navigation in `src/docs.json` if needed (not
applicable - added sections to existing pages)
- [ ] I have gotten approval from the relevant reviewers
- [ ] (Internal team members only / optional) I have created a preview
deployment using the [Create Preview Branch
workflow](https://github.com/langchain-ai/docs/actions/workflows/create-preview-branch.yml)
## Additional notes
**Changes made:**
1. `src/oss/python/integrations/providers/timbr.mdx` (new file):
* Provider overview describing Timbr's semantic SQL capabilities
* Installation instructions with optional LLM provider selection
* Import examples for main chains and agent
* Cross-reference to detailed usage guide
2. `src/oss/python/integrations/graphs/timbr.mdx` (new file):
* Comprehensive integration guide with setup instructions
* Environment-based configuration documentation
* Examples for main tools:
* ExecuteTimbrQueryChain for query execution
* GenerateAnswerChain for response generation
* TimbrLlmConnector for manual integration
* LLM configuration examples using both standard LangChain models and
Timbr's LlmWrapper
* Links to additional resources (PyPI, GitHub, official docs)
3. `src\oss\python\integrations\providers\all_providers.mdx` (updated):
* Added Timbr card in alphabetical order
* Description: "Semantic layer for data integration and querying"
* Link to Timbr provider page
## Key features documented:
* **Semantic SQL generation:** Natural language to SQL using
ontology-driven semantic layers
* **Environment configuration:** Optional environment variables for
simplified setup
* **Multiple LLM support:** Compatible with OpenAI, Anthropic, Google,
Azure, Snowflake, Databricks, and Vertex AI
* **Flexible usage patterns:** Pre-built agent, individual chains, or
manual connector
* **Usage metadata:** Token counting and tracking for LLM interactions
---------
Co-authored-by: Copilot <[email protected]>
Co-authored-by: Lauren Hirata Singh <[email protected]>
Co-authored-by: Mason Daugherty <[email protected]>
Co-authored-by: Mason Daugherty <[email protected]>langchain-timbr provider documentation (#1161)1 parent ee64a2f commit 1b90f03
File tree
3 files changed
+255
-0
lines changed- src/oss/python/integrations
- graphs
- providers
3 files changed
+255
-0
lines changed| Original file line number | Diff line number | Diff line change | |
|---|---|---|---|
| |||
| 1 | + | |
| 2 | + | |
| 3 | + | |
| 4 | + | |
| 5 | + | |
| 6 | + | |
| 7 | + | |
| 8 | + | |
| 9 | + | |
| 10 | + | |
| 11 | + | |
| 12 | + | |
| 13 | + | |
| 14 | + | |
| 15 | + | |
| 16 | + | |
| 17 | + | |
| 18 | + | |
| 19 | + | |
| 20 | + | |
| 21 | + | |
| 22 | + | |
| 23 | + | |
| 24 | + | |
| 25 | + | |
| 26 | + | |
| 27 | + | |
| 28 | + | |
| 29 | + | |
| 30 | + | |
| 31 | + | |
| 32 | + | |
| 33 | + | |
| 34 | + | |
| 35 | + | |
| 36 | + | |
| 37 | + | |
| 38 | + | |
| 39 | + | |
| 40 | + | |
| 41 | + | |
| 42 | + | |
| 43 | + | |
| 44 | + | |
| 45 | + | |
| 46 | + | |
| 47 | + | |
| 48 | + | |
| 49 | + | |
| 50 | + | |
| 51 | + | |
| 52 | + | |
| 53 | + | |
| 54 | + | |
| 55 | + | |
| 56 | + | |
| 57 | + | |
| 58 | + | |
| 59 | + | |
| 60 | + | |
| 61 | + | |
| 62 | + | |
| 63 | + | |
| 64 | + | |
| 65 | + | |
| 66 | + | |
| 67 | + | |
| 68 | + | |
| 69 | + | |
| 70 | + | |
| 71 | + | |
| 72 | + | |
| 73 | + | |
| 74 | + | |
| 75 | + | |
| 76 | + | |
| 77 | + | |
| 78 | + | |
| 79 | + | |
| 80 | + | |
| 81 | + | |
| 82 | + | |
| 83 | + | |
| 84 | + | |
| 85 | + | |
| 86 | + | |
| 87 | + | |
| 88 | + | |
| 89 | + | |
| 90 | + | |
| 91 | + | |
| 92 | + | |
| 93 | + | |
| 94 | + | |
| 95 | + | |
| 96 | + | |
| 97 | + | |
| 98 | + | |
| 99 | + | |
| 100 | + | |
| 101 | + | |
| 102 | + | |
| 103 | + | |
| 104 | + | |
| 105 | + | |
| 106 | + | |
| 107 | + | |
| 108 | + | |
| 109 | + | |
| 110 | + | |
| 111 | + | |
| 112 | + | |
| 113 | + | |
| 114 | + | |
| 115 | + | |
| 116 | + | |
| 117 | + | |
| 118 | + | |
| 119 | + | |
| 120 | + | |
| 121 | + | |
| 122 | + | |
| 123 | + | |
| 124 | + | |
| 125 | + | |
| 126 | + | |
| 127 | + | |
| 128 | + | |
| 129 | + | |
| 130 | + | |
| 131 | + | |
| 132 | + | |
| 133 | + | |
| 134 | + | |
| 135 | + | |
| 136 | + | |
| 137 | + | |
| 138 | + | |
| 139 | + | |
| 140 | + | |
| 141 | + | |
| 142 | + | |
| 143 | + | |
| 144 | + | |
| 145 | + | |
| 146 | + | |
| 147 | + | |
| 148 | + | |
| 149 | + | |
| 150 | + | |
| 151 | + | |
| 152 | + | |
| 153 | + | |
| 154 | + | |
| 155 | + | |
| 156 | + | |
| 157 | + | |
| 158 | + | |
| 159 | + | |
| 160 | + | |
| 161 | + | |
| 162 | + | |
| 163 | + | |
| 164 | + | |
| 165 | + | |
| 166 | + | |
| 167 | + | |
| 168 | + | |
| 169 | + | |
| 170 | + | |
| 171 | + | |
| 172 | + | |
| 173 | + | |
| 174 | + | |
| 175 | + | |
| 176 | + | |
| 177 | + | |
| 178 | + | |
| 179 | + | |
| 180 | + | |
| 181 | + | |
| 182 | + | |
| 183 | + | |
| 184 | + | |
| 185 | + | |
| 186 | + | |
| 187 | + | |
| 188 | + | |
| 189 | + | |
| 190 | + | |
| 191 | + | |
| 192 | + | |
| 193 | + | |
| 194 | + | |
| 195 | + | |
| 196 | + | |
| 197 | + | |
| 198 | + | |
| 199 | + | |
| 200 | + | |
| 201 | + | |
| 202 | + | |
| 203 | + | |
| 204 | + | |
| 205 | + | |
| 206 | + | |
| 207 | + | |
| 208 | + | |
| 209 | + | |
| 210 | + | |
| 211 | + | |
| 212 | + | |
| 213 | + | |
| Original file line number | Diff line number | Diff line change | |
|---|---|---|---|
| |||
2672 | 2672 | | |
2673 | 2673 | | |
2674 | 2674 | | |
| 2675 | + | |
| 2676 | + | |
| 2677 | + | |
| 2678 | + | |
| 2679 | + | |
| 2680 | + | |
| 2681 | + | |
| 2682 | + | |
2675 | 2683 | | |
2676 | 2684 | | |
2677 | 2685 | | |
| |||
| Original file line number | Diff line number | Diff line change | |
|---|---|---|---|
| |||
| 1 | + | |
| 2 | + | |
| 3 | + | |
| 4 | + | |
| 5 | + | |
| 6 | + | |
| 7 | + | |
| 8 | + | |
| 9 | + | |
| 10 | + | |
| 11 | + | |
| 12 | + | |
| 13 | + | |
| 14 | + | |
| 15 | + | |
| 16 | + | |
| 17 | + | |
| 18 | + | |
| 19 | + | |
| 20 | + | |
| 21 | + | |
| 22 | + | |
| 23 | + | |
| 24 | + | |
| 25 | + | |
| 26 | + | |
| 27 | + | |
| 28 | + | |
| 29 | + | |
| 30 | + | |
| 31 | + | |
| 32 | + | |
| 33 | + | |
| 34 | + | |
0 commit comments