-
-
Notifications
You must be signed in to change notification settings - Fork 118
/
Copy pathpose.cpp
269 lines (235 loc) · 10.4 KB
/
pose.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
/**
* @file pose.cpp
* @author laugh12321 ([email protected])
* @brief POSE C++ 示例
* @date 2025-01-23
*
* @copyright Copyright (c) 2025 laugh12321. All Rights Reserved.
*
*/
#include <filesystem>
#include <fstream>
#include <iostream>
#include <memory>
#include <opencv2/opencv.hpp>
#include "deploy/model.hpp"
#include "deploy/option.hpp"
#include "deploy/result.hpp"
namespace fs = std::filesystem;
// 获取指定目录中的图像文件
std::vector<std::string> get_images_in_directory(const std::string& folder_path) {
std::vector<std::string> image_files;
for (const auto& entry : fs::directory_iterator(folder_path)) {
const auto extension = entry.path().extension().string();
if (fs::is_regular_file(entry) && (extension == ".jpg" || extension == ".png" || extension == ".jpeg" || extension == ".bmp")) {
image_files.push_back(entry.path().string());
}
}
return image_files;
}
// 创建输出目录
void create_output_directory(const std::string& output_path) {
if (!fs::exists(output_path) && !fs::create_directories(output_path)) {
throw std::runtime_error("Failed to create output directory: " + output_path);
} else if (!fs::is_directory(output_path)) {
throw std::runtime_error("Output path exists but is not a directory: " + output_path);
}
}
// 从文件中生成标签
std::vector<std::string> generate_labels(const std::string& label_file) {
std::ifstream file(label_file);
if (!file.is_open()) {
throw std::runtime_error("Failed to open labels file: " + label_file);
}
std::vector<std::string> labels;
std::string label;
while (std::getline(file, label)) {
labels.emplace_back(label);
}
return labels;
}
// 可视化推理结果
void visualize(cv::Mat& image, deploy::PoseRes& result, const std::vector<std::string>& labels) {
// 定义人体关键点连接关系(骨架)
std::vector<std::pair<int, int>> skeleton = {
{16, 14},
{14, 12},
{17, 15},
{15, 13},
{12, 13},
{ 6, 12},
{ 7, 13},
{ 6, 7},
{ 6, 8},
{ 7, 9},
{ 8, 10},
{ 9, 11},
{ 2, 3},
{ 1, 2},
{ 1, 3},
{ 2, 4},
{ 3, 5},
{ 4, 6},
{ 5, 7}
};
// 遍历每个检测到的目标
for (size_t i = 0; i < result.num; ++i) {
auto& box = result.boxes[i]; // 当前目标的边界框
int cls = result.classes[i]; // 当前目标的类别
float score = result.scores[i]; // 当前目标的置信度
auto& label = labels[cls]; // 获取类别对应的标签
std::string label_text = label + " " + cv::format("%.3f", score); // 构造显示的标签文本
// 绘制边界框和标签
int base_line;
cv::Size label_size = cv::getTextSize(label_text, cv::FONT_HERSHEY_SIMPLEX, 0.6, 1, &base_line);
cv::rectangle(image, cv::Point(box.left, box.top), cv::Point(box.right, box.bottom), cv::Scalar(251, 81, 163), 2, cv::LINE_AA);
cv::rectangle(image, cv::Point(box.left, box.top - label_size.height), cv::Point(box.left + label_size.width, box.top), cv::Scalar(125, 40, 81), -1);
cv::putText(image, label_text, cv::Point(box.left, box.top), cv::FONT_HERSHEY_SIMPLEX, 0.6, cv::Scalar(253, 168, 208), 1);
// 获取当前目标的关键点数量
int num_keypoints = result.kpts[i].size();
bool is_pose = num_keypoints == 17; // 判断是否为人体姿态检测结果(17个关键点)
// 绘制关键点
for (size_t j = 0; j < num_keypoints; ++j) {
auto& kpt = result.kpts[i][j]; // 当前关键点
if (kpt.conf.has_value() && kpt.conf.value() < 0.25) {
// 如果关键点的置信度低于阈值,跳过绘制
continue;
}
if (int(kpt.x) % image.cols != 0 && int(kpt.y) % image.rows != 0) {
// 绘制关键点
cv::circle(image, cv::Point(kpt.x, kpt.y), 3, cv::Scalar(125, 40, 81), -1, cv::LINE_AA);
}
}
// 绘制关键点连接线(骨架)
if (is_pose) {
for (const auto& sk : skeleton) {
const auto& kpt1 = result.kpts[i][sk.first - 1]; // 第一个关键点
const auto& kpt2 = result.kpts[i][sk.second - 1]; // 第二个关键点
// 如果关键点的置信度低于阈值,跳过绘制
if (kpt1.conf < 0.25 || kpt2.conf < 0.25) {
continue;
}
// 检查关键点是否超出图像边界
if (int(kpt1.x) % image.cols == 0 || int(kpt1.y) % image.rows == 0 || int(kpt1.x) < 0 || kpt1.y < 0) {
continue;
}
if (int(kpt2.x) % image.cols == 0 || int(kpt2.y) % image.rows == 0 || int(kpt2.x) < 0 || kpt2.y < 0) {
continue;
}
// 绘制连接线
cv::line(image, cv::Point(kpt1.x, kpt1.y), cv::Point(kpt2.x, kpt2.y), cv::Scalar(253, 168, 208), 2, cv::LINE_AA);
}
}
}
}
// 解析命令行参数
void parse_arguments(int argc, char** argv, std::string& engine_path, std::string& input_path, std::string& output_path, std::string& label_path) {
if (argc < 4) {
std::cerr << "Usage: " << argv[0] << " -e <engine> -i <input> [-o <output>] [-l <labels>]" << std::endl;
std::exit(EXIT_FAILURE);
}
for (int i = 1; i < argc; ++i) {
std::string arg = argv[i];
if (arg == "-e" || arg == "--engine") {
engine_path = argv[++i];
} else if (arg == "-i" || arg == "--input") {
input_path = argv[++i];
} else if (arg == "-o" || arg == "--output") {
output_path = argv[++i];
} else if (arg == "-l" || arg == "--labels") {
label_path = argv[++i];
} else {
std::cerr << "Unknown argument: " << arg << std::endl;
std::exit(EXIT_FAILURE);
}
}
}
// 处理单张图像
void process_single_image(const std::string& image_path, const std::string& output_path, deploy::PoseModel& model, const std::vector<std::string>& labels) {
cv::Mat image = cv::imread(image_path, cv::IMREAD_COLOR);
if (image.empty()) {
throw std::runtime_error("Failed to read image from path: " + image_path);
}
deploy::Image img(image.data, image.cols, image.rows);
auto result = model.predict(img);
if (!output_path.empty()) {
visualize(image, result, labels);
fs::path output_file_path = output_path / fs::path(image_path).filename();
cv::imwrite(output_file_path.string(), image);
}
}
// 处理一批图像
void process_batch_images(const std::vector<std::string>& image_paths, const std::string& output_path, deploy::PoseModel& model, const std::vector<std::string>& labels) {
const int batch_size = model.batch_size();
for (size_t i = 0; i < image_paths.size(); i += batch_size) {
std::vector<cv::Mat> images;
std::vector<deploy::Image> img_batch;
std::vector<std::string> img_name_batch;
for (size_t j = i; j < i + batch_size && j < image_paths.size(); ++j) {
cv::Mat image = cv::imread(image_paths[j], cv::IMREAD_COLOR);
if (image.empty()) {
throw std::runtime_error("Failed to read image from path: " + image_paths[j]);
}
images.push_back(image);
img_batch.emplace_back(image.data, image.cols, image.rows);
img_name_batch.push_back(fs::path(image_paths[j]).filename().string());
}
auto results = model.predict(img_batch);
if (!output_path.empty()) {
for (size_t j = 0; j < images.size(); ++j) {
visualize(images[j], results[j], labels);
fs::path output_file_path = output_path + "/" + img_name_batch[j];
cv::imwrite(output_file_path.string(), images[j]);
}
}
}
}
int main(int argc, char** argv) {
try {
std::string engine_path, input_path, output_path, label_path;
parse_arguments(argc, argv, engine_path, input_path, output_path, label_path);
if (!fs::exists(engine_path)) {
throw std::runtime_error("Engine path does not exist: " + engine_path);
}
if (!fs::exists(input_path) || (!fs::is_regular_file(input_path) && !fs::is_directory(input_path))) {
throw std::runtime_error("Input path does not exist or is not a regular file/directory: " + input_path);
}
std::vector<std::string> labels;
if (!output_path.empty()) {
if (label_path.empty()) {
throw std::runtime_error("Please provide a labels file using -l or --labels.");
}
if (!fs::exists(label_path)) {
throw std::runtime_error("Label path does not exist: " + label_path);
}
labels = generate_labels(label_path);
create_output_directory(output_path);
}
deploy::InferOption option;
option.enableSwapRB();
if (!fs::is_regular_file(input_path)) {
option.enablePerformanceReport();
}
auto model = std::make_unique<deploy::PoseModel>(engine_path, option);
if (fs::is_regular_file(input_path)) {
process_single_image(input_path, output_path, *model, labels);
} else {
auto image_files = get_images_in_directory(input_path);
if (image_files.empty()) {
throw std::runtime_error("Failed to read image from path: " + input_path);
}
process_batch_images(image_files, output_path, *model, labels);
}
std::cout << "Inference completed." << std::endl;
if (option.enable_performance_report) {
auto [throughput_str, gpu_latency_str, cpu_latency_str] = model->performanceReport();
std::cout << throughput_str << std::endl;
std::cout << gpu_latency_str << std::endl;
std::cout << cpu_latency_str << std::endl;
}
} catch (const std::exception& e) {
std::cerr << "Error: " << e.what() << std::endl;
return EXIT_FAILURE;
}
return 0;
}