@@ -806,7 +806,7 @@ theorem mk_bounded_subset {α : Type*} (h : ∀ x < #α, 2 ^ x < #α) {r : α
806
806
constructor
807
807
rintro ⟨s, hs⟩
808
808
exact (not_unbounded_iff s).2 hs (unbounded_of_isEmpty s)
809
- have h' : IsStrongLimit #α := ⟨ha, @ h⟩
809
+ have h' : IsStrongLimit #α := ⟨ha, h⟩
810
810
have ha := h'.aleph0_le
811
811
apply le_antisymm
812
812
· have : { s : Set α | Bounded r s } = ⋃ i, 𝒫{ j | r j i } := setOf_exists _
@@ -831,7 +831,7 @@ theorem mk_subset_mk_lt_cof {α : Type*} (h : ∀ x < #α, 2 ^ x < #α) :
831
831
#{ s : Set α // #s < cof (#α).ord } = #α := by
832
832
rcases eq_or_ne #α 0 with (ha | ha)
833
833
· simp [ha]
834
- have h' : IsStrongLimit #α := ⟨ha, @ h⟩
834
+ have h' : IsStrongLimit #α := ⟨ha, h⟩
835
835
rcases ord_eq α with ⟨r, wo, hr⟩
836
836
haveI := wo
837
837
apply le_antisymm
@@ -1146,7 +1146,7 @@ def IsInaccessible (c : Cardinal) :=
1146
1146
1147
1147
theorem IsInaccessible.mk {c} (h₁ : ℵ₀ < c) (h₂ : c ≤ c.ord.cof) (h₃ : ∀ x < c, 2 ^ x < c) :
1148
1148
IsInaccessible c :=
1149
- ⟨h₁, ⟨h₁.le, h₂⟩, (aleph0_pos.trans h₁).ne', @ h₃⟩
1149
+ ⟨h₁, ⟨h₁.le, h₂⟩, (aleph0_pos.trans h₁).ne', h₃⟩
1150
1150
1151
1151
-- Lean's foundations prove the existence of ℵ₀ many inaccessible cardinals
1152
1152
theorem univ_inaccessible : IsInaccessible univ.{u, v} :=
0 commit comments