-
Notifications
You must be signed in to change notification settings - Fork 514
/
Copy pathghost_trader.py
255 lines (234 loc) · 11.5 KB
/
ghost_trader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
"""
It is observed that if last trade is profitable, next trade would more likely be a loss.
Then why not create a ghost trader on the same strategy; and trade only when the ghost trader's a loss.
Elements: two moving averages; rsi; donchain channel
conditions: 1. long if short MA > long MA, rsi lower than overbought 70, new high
2. short if short MA < long MA, ris higher than oversold 30, new low
exit: 1. exit long if lower than donchian lower band
2. exit short if higher than donchian upper band
"""
import os
import numpy as np
import pandas as pd
import pytz
from datetime import datetime, timezone
import multiprocessing
import talib
import quanttrader as qt
import matplotlib.pyplot as plt
import empyrical as ep
import pyfolio as pf
# set browser full width
from IPython.core.display import display, HTML
display(HTML("<style>.container { width:100% !important; }</style>"))
class GhostTrader(qt.StrategyBase):
def __init__(self,
ma_short=3, ma_long=21, rsi_n = 9, rsi_oversold=30, rsi_overbought=70, donchian_n = 21
):
super(GhostTrader, self).__init__()
self.ma_short = ma_short
self.ma_long = ma_long
self.rsi_n = rsi_n
self.rsi_oversold = rsi_oversold
self.rsi_overbought = rsi_overbought
self.donchian_n = donchian_n
self.lookback = max(ma_long, rsi_n, donchian_n)
self.long_ghost_virtual = False
self.long_ghost_virtual_price = 0.0
self.short_ghost_virtual = False
self.short_ghost_virtual_price = 0.0
self.current_time = None
def on_tick(self, tick_event):
self.current_time = tick_event.timestamp
# print('Processing {}'.format(self.current_time))
symbol = self.symbols[0]
df_hist = self._data_board.get_hist_price(symbol, tick_event.timestamp)
# wait for enough bars
if df_hist.shape[0] < self.lookback:
return
current_price = df_hist.iloc[-1].Close
current_size = self._position_manager.get_position_size(symbol)
npv = self._position_manager.current_total_capital
ema_short = talib.EMA(df_hist['Close'], self.ma_short).iloc[-1]
ema_long = talib.EMA(df_hist['Close'], self.ma_long).iloc[-1]
rsi = talib.RSI(df_hist['Close'], self.rsi_n).iloc[-1]
long_stop = min(df_hist.Low.iloc[-self.donchian_n:])
short_stop = max(df_hist.High.iloc[-self.donchian_n:])
# fast ma > slow ma, rsi < 70, new high
if current_size == 0 and ema_short > ema_long and rsi < self.rsi_overbought and \
df_hist.High.iloc[-1] > df_hist.High.iloc[-2]:
# ghost long
if self.long_ghost_virtual == False:
print('Ghost long, Pre-Price: %.2f, Long Price: %.2f' %
(df_hist['Close'].iloc[-2],
df_hist['Close'].iloc[-1]
))
self.long_ghost_virtual_price = df_hist['Close'].iloc[-1]
self.long_ghost_virtual = True
# actual long; after ghost loss
if self.long_ghost_virtual == True and self.long_ghost_virtual_price > df_hist['Close'].iloc[-1]:
self.long_ghost_virtual = False
target_size = (int)(npv / current_price)
self.adjust_position(symbol, size_from=current_size, size_to=target_size, timestamp=self.current_time)
print('BUY ORDER SENT, Pre-Price: %.2f, Price: %.2f, ghost price %.2f, Size: %.2f' %
(df_hist['Close'].iloc[-2],
df_hist['Close'].iloc[-1],
self.long_ghost_virtual_price,
target_size))
# close long if below Donchian lower band
elif current_size > 0 and df_hist['Close'].iloc[-1] <= long_stop:
target_size = 0
self.adjust_position(symbol, size_from=current_size, size_to=target_size, timestamp=self.current_time)
print('CLOSE LONG ORDER SENT, Pre-Price: %.2f, Price: %.2f, Low: %.2f, Stop: %.2f, Size: %.2f' %
(df_hist['Close'].iloc[-2],
df_hist['Close'].iloc[-1],
df_hist['Low'].iloc[-1],
long_stop,
target_size))
# fast ma < slow ma, rsi > 30, new low
if current_size == 0 and ema_short < ema_long and rsi > self.rsi_oversold and \
df_hist['Low'].iloc[-1] < df_hist['Low'].iloc[-2]:
# ghost short
if self.short_ghost_virtual == False:
print('Ghost short, Pre-Price: %.2f, Long Price: %.2f' %
(df_hist['Close'].iloc[-2],
df_hist['Close'].iloc[-1]
))
self.short_ghost_virtual_price = df_hist['Close'].iloc[-1]
self.short_ghost_virtual = True
# actual short; after ghost loss
if self.short_ghost_virtual == True and self.short_ghost_virtual_price < df_hist['Close'].iloc[-1]:
self.short_ghost_virtual = False
target_size = -(int)(npv / current_price)
self.adjust_position(symbol, size_from=current_size, size_to=target_size, timestamp=self.current_time)
print('SELL ORDER SENT, Pre-Price: %.2f, Price: %.2f, ghost price %.2f, Size: %.2f' %
(df_hist['Close'].iloc[-2],
df_hist['Close'].iloc[-1],
self.short_ghost_virtual_price,
target_size))
# close short if above Donchian upper band
elif current_size < 0 and df_hist['High'].iloc[-1] >= short_stop:
target_size = 0
self.adjust_position(symbol, size_from=current_size, size_to=target_size, timestamp=self.current_time)
print('CLOSE SHORT ORDER SENT, Pre-Price: %.2f, Price: %.2f, Low: %.2f, Stop: %.2f, Size: %.2f' %
(df_hist['Close'].iloc[-2],
df_hist['Close'].iloc[-1],
df_hist['High'].iloc[-1],
short_stop,
0))
def parameter_search(engine, tag, target_name, return_dict):
"""
This function should be the same for all strategies.
The only reason not included in quanttrader is because of its dependency on pyfolio (to get perf_stats)
"""
ds_equity, _, _ = engine.run()
try:
strat_ret = ds_equity.pct_change().dropna()
perf_stats_strat = pf.timeseries.perf_stats(strat_ret)
target_value = perf_stats_strat.loc[target_name] # first table in tuple
except KeyError:
target_value = 0
return_dict[tag] = target_value
if __name__ == '__main__':
do_optimize = False
run_in_jupyter = False
symbol = 'SPX'
benchmark = 'SPX'
datapath = os.path.join('../data/', f'{symbol}.csv')
data = qt.util.read_ohlcv_csv(datapath)
init_capital = 100_000.0
test_start_date = datetime(2010,1,1, 8, 30, 0, 0, pytz.timezone('America/New_York'))
test_end_date = datetime(2019,12,31, 6, 0, 0, 0, pytz.timezone('America/New_York'))
if do_optimize: # parallel parameter search
params_list = [{'ma_short': 3, 'ma_long': 21, 'rsi_n': 9, 'rsi_oversold': 30, 'rsi_overbought': 70, 'donchian_n': 21},
{'ma_short': 5, 'ma_long': 21, 'rsi_n': 9, 'rsi_oversold': 20, 'rsi_overbought': 80, 'donchian_n': 21}]
target_name = 'Sharpe ratio'
manager = multiprocessing.Manager()
return_dict = manager.dict()
jobs = []
for params in params_list:
strategy = GhostTrader()
strategy.set_capital(init_capital)
strategy.set_symbols([symbol])
backtest_engine = qt.BacktestEngine(test_start_date, test_end_date)
backtest_engine.set_capital(init_capital) # capital or portfolio >= capital for one strategy
backtest_engine.add_data(symbol, data)
strategy.set_params({'ma_short': params['ma_short'], 'rsi_oversold': params['rsi_oversold'], 'rsi_overbought': params['rsi_overbought']})
backtest_engine.set_strategy(strategy)
tag = (params['ma_short'], params['rsi_oversold'])
p = multiprocessing.Process(target=parameter_search, args=(backtest_engine, tag, target_name, return_dict))
jobs.append(p)
p.start()
for proc in jobs:
proc.join()
for k,v in return_dict.items():
print(k, v)
else:
strategy = GhostTrader()
strategy.set_capital(init_capital)
strategy.set_symbols([symbol])
strategy.set_params(None)
# Create a Data Feed
backtest_engine = qt.BacktestEngine(test_start_date, test_end_date)
backtest_engine.set_capital(init_capital) # capital or portfolio >= capital for one strategy
backtest_engine.add_data(symbol, data)
backtest_engine.set_strategy(strategy)
ds_equity, df_positions, df_trades = backtest_engine.run()
# save to excel
qt.util.save_one_run_results('./output', ds_equity, df_positions, df_trades)
# ------------------------- Evaluation and Plotting -------------------------------------- #
strat_ret = ds_equity.pct_change().dropna()
strat_ret.name = 'strat'
bm = qt.util.read_ohlcv_csv(os.path.join('../data/', f'{benchmark}.csv'))
bm_ret = bm['Close'].pct_change().dropna()
bm_ret.index = pd.to_datetime(bm_ret.index)
bm_ret = bm_ret[strat_ret.index]
bm_ret.name = 'benchmark'
perf_stats_strat = pf.timeseries.perf_stats(strat_ret)
perf_stats_all = perf_stats_strat
perf_stats_bm = pf.timeseries.perf_stats(bm_ret)
perf_stats_all = pd.concat([perf_stats_strat, perf_stats_bm], axis=1)
perf_stats_all.columns = ['Strategy', 'Benchmark']
drawdown_table = pf.timeseries.gen_drawdown_table(strat_ret, 5)
monthly_ret_table = ep.aggregate_returns(strat_ret, 'monthly')
monthly_ret_table = monthly_ret_table.unstack().round(3)
ann_ret_df = pd.DataFrame(ep.aggregate_returns(strat_ret, 'yearly'))
ann_ret_df = ann_ret_df.unstack().round(3)
print('-------------- PERFORMANCE ----------------')
print(perf_stats_all)
print('-------------- DRAWDOWN ----------------')
print(drawdown_table)
print('-------------- MONTHLY RETURN ----------------')
print(monthly_ret_table)
print('-------------- ANNUAL RETURN ----------------')
print(ann_ret_df)
if run_in_jupyter:
pf.create_full_tear_sheet(
strat_ret,
benchmark_rets=bm_ret,
positions=df_positions,
transactions=df_trades,
round_trips=False)
plt.show()
else:
f1 = plt.figure(1)
pf.plot_rolling_returns(strat_ret, factor_returns=bm_ret)
f1.show()
f2 = plt.figure(2)
pf.plot_rolling_volatility(strat_ret, factor_returns=bm_ret)
f2.show()
f3 = plt.figure(3)
pf.plot_rolling_sharpe(strat_ret)
f3.show()
f4 = plt.figure(4)
pf.plot_drawdown_periods(strat_ret)
f4.show()
f5 = plt.figure(5)
pf.plot_monthly_returns_heatmap(strat_ret)
f5.show()
f6 = plt.figure(6)
pf.plot_annual_returns(strat_ret)
f6.show()
f7 = plt.figure(7)
pf.plot_monthly_returns_dist(strat_ret)
plt.show()