|
1 | 1 |
|
2 | 2 | 
|
3 | 3 |
|
4 |
| -# Labelformat - Label Conversion, Simplified |
| 4 | +# Labelformat - Fast Label Conversion for Computer Vision |
5 | 5 |
|
| 6 | +**Labelformat** is an open-source Python framework for converting between popular computer vision annotation formats like YOLO, COCO, PascalVOC, and KITTI. Save hours on tedious format conversions and ensure consistency in your workflows. |
6 | 7 |
|
7 |
| -Welcome to **Labelformat**—an open-source tool designed to effortlessly convert between various popular computer vision label formats. Whether you're adapting labels from downloaded datasets or modifying outputs from labeling tools to suit your model's requirements, Labelformat streamlines the process, saving you time and reducing complexity. |
8 | 8 |
|
9 |
| -## Why Choose Labelformat? |
| 9 | +## Key Features |
| 10 | +- **Wide Format Support**: COCO, YOLO (v5-v11), PascalVOC, KITTI, Labelbox, and more. |
| 11 | +- **Cross-Platform**: Compatible with Python 3.7+ on Windows, macOS, and Linux. |
| 12 | +- **Flexible Usage**: Intuitive CLI and Python API. |
| 13 | +- **Efficient**: Memory-conscious, optimized for large datasets. |
| 14 | +- **Offline First**: Operates locally without data uploads. |
| 15 | +- **Tested for Accuracy**: Round-trip tests for consistent results. |
10 | 16 |
|
11 |
| -- **Comprehensive Format Support:** Convert seamlessly between formats like COCO, YOLOv5-11, PascalVOC, KITTI, and more. |
12 |
| -- **Ease of Use:** Intuitive CLI and Python API for flexible integration into your workflows. |
13 |
| -- **Efficiency:** Memory-conscious processing ensures optimal performance, even with large datasets. |
14 |
| -- **Reliability:** Thoroughly tested with round-trip tests to maintain label consistency. |
| 17 | +## Get Started Quickly |
15 | 18 |
|
16 |
| -## Get Started |
| 19 | +1. **Install via pip**: |
| 20 | + ```bash |
| 21 | + pip install labelformat |
| 22 | + ``` |
| 23 | +2. **Convert Labels in One Command**: |
| 24 | + ```bash |
| 25 | + labelformat convert --task object-detection \ |
| 26 | + --input-format coco \ |
| 27 | + --input-file coco-labels/train.json \ |
| 28 | + --output-format yolov8 \ |
| 29 | + --output-file yolo-labels/data.yaml |
| 30 | + ``` |
17 | 31 |
|
18 |
| -- [Installation](installation.md) |
19 |
| -- [Quick Start Guide](quick_start.md) |
20 |
| -- [Explore Features](features.md) |
| 32 | +## Supported Formats |
21 | 33 |
|
22 |
| -## Join Our Community |
| 34 | +### **2D Object Detection Label Formats** |
23 | 35 |
|
24 |
| -Labelformat is actively maintained by [Lightly](https://www.lightly.ai), a company dedicated to building efficient active learning pipelines. We welcome contributions and feedback—check out our [Contributing Guide](contributing.md) to get involved! |
| 36 | +| Format | Read ✔️ | Write ✔️ | |
| 37 | +|--------------|---------|----------| |
| 38 | +| COCO | ✔️ | ✔️ | |
| 39 | +| KITTI | ✔️ | ✔️ | |
| 40 | +| Labelbox | ✔️ | ❌ | |
| 41 | +| Lightly | ✔️ | ✔️ | |
| 42 | +| PascalVOC | ✔️ | ✔️ | |
| 43 | +| YOLOv5 - v11 | ✔️ | ✔️ | |
25 | 44 |
|
26 | 45 | ---
|
27 | 46 |
|
| 47 | +### **2D Instance Segmentation Label Formats** |
| 48 | + |
| 49 | +| Format | Read ✔️ | Write ✔️ | |
| 50 | +|--------------|---------|----------| |
| 51 | +| COCO | ✔️ | ✔️ | |
| 52 | +| YOLOv8 | ✔️ | ✔️ | |
| 53 | + |
| 54 | + |
| 55 | +## Explore More |
| 56 | +- [Quick Start Guide](quick-start.md) |
| 57 | +- [Detailed Usage Guide](usage.md) |
| 58 | +- [List of all features](features.md) |
| 59 | +--- |
| 60 | + |
28 | 61 | ## 📦 Quick Links
|
29 | 62 |
|
30 | 63 | - [GitHub Repository](https://github.com/lightly-ai/labelformat)
|
31 | 64 | - [PyPI Package](https://pypi.org/project/labelformat/)
|
32 |
| -- [Documentation](https://labelformat.com) |
| 65 | +- [Documentation](https://labelformat.com) |
| 66 | + |
| 67 | +Labelformat is maintained by [Lightly](https://www.lightly.ai). |
0 commit comments