|
| 1 | +""" Contrastive Loss Functions """ |
| 2 | + |
| 3 | +# Copyright (c) 2020. Lightly AG and its affiliates. |
| 4 | +# All Rights Reserved |
| 5 | + |
| 6 | +from enum import Enum |
| 7 | +from typing import Optional, Tuple |
| 8 | + |
| 9 | +import torch |
| 10 | +import torch.nn.functional as F |
| 11 | +from torch import Tensor |
| 12 | +from torch import distributed as torch_dist |
| 13 | +from torch import nn |
| 14 | + |
| 15 | +from lightly.utils import dist |
| 16 | + |
| 17 | + |
| 18 | +def divide_no_nan(numerator: Tensor, denominator: Tensor) -> Tensor: |
| 19 | + """Performs tensor division, setting result to zero where denominator is zero. |
| 20 | +
|
| 21 | + Args: |
| 22 | + numerator: |
| 23 | + Numerator tensor. |
| 24 | + denominator: |
| 25 | + Denominator tensor with possible zeroes. |
| 26 | +
|
| 27 | + Returns: |
| 28 | + Result with zeros where denominator is zero. |
| 29 | + """ |
| 30 | + result = torch.zeros_like(numerator) |
| 31 | + nonzero_mask = denominator != 0 |
| 32 | + result[nonzero_mask] = numerator[nonzero_mask] / denominator[nonzero_mask] |
| 33 | + return result |
| 34 | + |
| 35 | + |
| 36 | +class ContrastMode(Enum): |
| 37 | + """Contrast Mode Enum for SupCon Loss. |
| 38 | +
|
| 39 | + Offers the three contrast modes as enum for the SupCon loss. The three modes are: |
| 40 | +
|
| 41 | + - ContrastMode.ALL: Uses all positives and negatives. |
| 42 | + - ContrastMode.ONE_POSITIVE: Uses only one positive, and all negatives. |
| 43 | + - ContrastMode.ONLY_NEGATIVES: Uses no positives, only negatives. |
| 44 | + """ |
| 45 | + |
| 46 | + ALL = 1 |
| 47 | + ONE_POSITIVE = 2 |
| 48 | + ONLY_NEGATIVES = 3 |
| 49 | + |
| 50 | + |
| 51 | +class SupConLoss(nn.Module): |
| 52 | + """Implementation of the Supervised Contrastive Loss. |
| 53 | +
|
| 54 | + This implementation follows the SupCon[0] paper. |
| 55 | +
|
| 56 | + - [0] SupCon, 2020, https://arxiv.org/abs/2004.11362 |
| 57 | +
|
| 58 | + Attributes: |
| 59 | + temperature: |
| 60 | + Scale logits by the inverse of the temperature. |
| 61 | + contrast_mode: |
| 62 | + Whether to use all positives, one positive, or none. All negatives are |
| 63 | + used in all cases. |
| 64 | + gather_distributed: |
| 65 | + If True then negatives from all GPUs are gathered before the |
| 66 | + loss calculation. |
| 67 | +
|
| 68 | + Raises: |
| 69 | + ValueError: If abs(temperature) < 1e-8 to prevent divide by zero. |
| 70 | + ValueError: If gather_distributed is True but torch.distributed is not available. |
| 71 | + NotImplementedError: If contrast_mode is outside the accepted ContrastMode values. |
| 72 | +
|
| 73 | + Examples: |
| 74 | + >>> # initialize loss function without memory bank |
| 75 | + >>> loss_fn = NTXentLoss(memory_bank_size=0) |
| 76 | + >>> |
| 77 | + >>> # generate two random transforms of images |
| 78 | + >>> t0 = transforms(images) |
| 79 | + >>> t1 = transforms(images) |
| 80 | + >>> |
| 81 | + >>> # feed through SimCLR or MoCo model |
| 82 | + >>> out0, out1 = model(t0), model(t1) |
| 83 | + >>> |
| 84 | + >>> # calculate loss |
| 85 | + >>> loss = loss_fn(out0, out1) |
| 86 | +
|
| 87 | + """ |
| 88 | + |
| 89 | + def __init__( |
| 90 | + self, |
| 91 | + temperature: float = 0.5, |
| 92 | + contrast_mode: ContrastMode = ContrastMode.ALL, |
| 93 | + gather_distributed: bool = False, |
| 94 | + ): |
| 95 | + """Initializes the NTXentLoss module with the specified parameters. |
| 96 | +
|
| 97 | + Args: |
| 98 | + temperature: |
| 99 | + Scale logits by the inverse of the temperature. |
| 100 | + gather_distributed: |
| 101 | + If True, negatives from all GPUs are gathered before the loss calculation. |
| 102 | +
|
| 103 | + Raises: |
| 104 | + ValueError: If temperature is less than 1e-8 to prevent divide by zero. |
| 105 | + ValueError: If gather_distributed is True but torch.distributed is not available. |
| 106 | + NotImplementedError: If contrast_mode is outside the accepted ContrastMode values. |
| 107 | + """ |
| 108 | + super().__init__() |
| 109 | + self.temperature = temperature |
| 110 | + self.contrast_mode = contrast_mode |
| 111 | + self.positives_cap = -1 # Unused at the moment |
| 112 | + self.gather_distributed = gather_distributed |
| 113 | + self.cross_entropy = nn.CrossEntropyLoss(reduction="mean") |
| 114 | + self.eps = 1e-8 |
| 115 | + |
| 116 | + if abs(self.temperature) < self.eps: |
| 117 | + raise ValueError( |
| 118 | + "Illegal temperature: abs({}) < 1e-8".format(self.temperature) |
| 119 | + ) |
| 120 | + if gather_distributed and not torch_dist.is_available(): |
| 121 | + raise ValueError( |
| 122 | + "gather_distributed is True but torch.distributed is not available. " |
| 123 | + "Please set gather_distributed=False or install a torch version with " |
| 124 | + "distributed support." |
| 125 | + ) |
| 126 | + |
| 127 | + def forward(self, features: Tensor, labels: Optional[Tensor] = None) -> Tensor: |
| 128 | + """Forward pass through Supervised Contrastive Loss. |
| 129 | +
|
| 130 | + Computes the loss based on contrast_mode setting. |
| 131 | +
|
| 132 | + Args: |
| 133 | + features: |
| 134 | + Tensor of at least 3 dimensions, corresponding to |
| 135 | + (batch_size, num_views, ...) |
| 136 | + labels: |
| 137 | + Onehot labels for each sample. Must match shape |
| 138 | + (batch_size, num_classes) |
| 139 | +
|
| 140 | + Raises: |
| 141 | + ValueError: If features does not have at least 3 dimensions. |
| 142 | + ValueError: If number of labels does not match batch_size. |
| 143 | +
|
| 144 | + Returns: |
| 145 | + Supervised Contrastive Loss value. |
| 146 | + """ |
| 147 | + |
| 148 | + device = features.device |
| 149 | + batch_size, num_views = features.shape[:2] |
| 150 | + |
| 151 | + # Normalize the features to length 1 |
| 152 | + features = F.normalize(features, dim=2) |
| 153 | + |
| 154 | + # Memory bank could be used here but labelled samples are not yet supported. |
| 155 | + |
| 156 | + # Use cosine similarity (dot product) as all vectors are normalized to unit length |
| 157 | + |
| 158 | + # Use other samples from different classes in batch as negatives |
| 159 | + # and create diagonal mask that only selects similarities between |
| 160 | + # views of the same image / same class |
| 161 | + if self.gather_distributed and dist.world_size() > 1: |
| 162 | + # Gather hidden representations and optional labels from other processes |
| 163 | + global_features = torch.cat(dist.gather(features), 0) |
| 164 | + diag_mask = dist.eye_rank(batch_size, device=device) |
| 165 | + if labels is not None: |
| 166 | + global_labels = torch.cat(dist.gather(labels), 0) |
| 167 | + else: |
| 168 | + # Single process |
| 169 | + global_features = features |
| 170 | + diag_mask = torch.eye(batch_size, device=device, dtype=torch.bool) |
| 171 | + if labels is not None: |
| 172 | + global_labels = labels |
| 173 | + |
| 174 | + # Use the diagonal mask if labels is none, else compute the mask based on labels |
| 175 | + if labels is None: |
| 176 | + # No labels, typical semi-supervised contrastive learning like SimCLR |
| 177 | + mask = diag_mask |
| 178 | + else: |
| 179 | + mask = (labels @ global_labels.T).to(device) |
| 180 | + |
| 181 | + # Get features in shape [num_views * n, c] |
| 182 | + all_global_features = global_features.permute(1, 0, 2).reshape( |
| 183 | + -1, global_features.size(-1) |
| 184 | + ) |
| 185 | + |
| 186 | + if self.contrast_mode == ContrastMode.ONE_POSITIVE: |
| 187 | + anchor_features = features[:, 0] |
| 188 | + num_anchor_views = 1 |
| 189 | + else: |
| 190 | + anchor_features = features.permute(1, 0, 2).reshape(-1, features.size(-1)) |
| 191 | + num_anchor_views = num_views |
| 192 | + |
| 193 | + # Obtain the logits between anchor features and features across all processes |
| 194 | + # Logits will be shaped [local_batch_size * num_anchor_views, global_batch_size * num_views] |
| 195 | + # We then temperature scale it and subtract the max to improve numerical stability |
| 196 | + logits = torch.einsum("nc,mc->nm", anchor_features, all_global_features) |
| 197 | + logits /= self.temperature |
| 198 | + logits -= logits.max(dim=1, keepdim=True)[0].detach() |
| 199 | + exp_logits = torch.exp(logits) |
| 200 | + |
| 201 | + positives_mask, negatives_mask = self._create_tiled_masks( |
| 202 | + mask, diag_mask, num_views, num_anchor_views, self.positives_cap |
| 203 | + ) |
| 204 | + num_positives_per_row = positives_mask.sum(dim=1) |
| 205 | + |
| 206 | + if self.contrast_mode == ContrastMode.ONE_POSITIVE: |
| 207 | + denominator = exp_logits + (exp_logits * negatives_mask).sum( |
| 208 | + dim=1, keepdim=True |
| 209 | + ) |
| 210 | + elif self.contrast_mode == ContrastMode.ALL: |
| 211 | + denominator = (exp_logits * negatives_mask).sum(dim=1, keepdim=True) |
| 212 | + denominator += (exp_logits * positives_mask).sum(dim=1, keepdim=True) |
| 213 | + else: # ContrastMode.ONLY_NEGATIVES |
| 214 | + denominator = (exp_logits * negatives_mask).sum(dim=1, keepdim=True) |
| 215 | + |
| 216 | + # num_positives_per_row can be zero iff 1 view is used. Here we use a safe |
| 217 | + # dividing method seting those values to zero to prevent division by zero errors. |
| 218 | + |
| 219 | + # Only implements SupCon_{out} |
| 220 | + log_probs = (logits - torch.log(denominator)) * positives_mask |
| 221 | + log_probs = log_probs.sum(dim=1) |
| 222 | + log_probs = divide_no_nan(log_probs, num_positives_per_row) |
| 223 | + |
| 224 | + loss = -log_probs |
| 225 | + |
| 226 | + if num_views != 1: |
| 227 | + loss = loss.mean(dim=0) |
| 228 | + else: |
| 229 | + num_valid_views_per_sample = num_positives_per_row.unsqueeze(0) |
| 230 | + loss = divide_no_nan(loss, num_valid_views_per_sample).squeeze() |
| 231 | + |
| 232 | + return loss |
| 233 | + |
| 234 | + def _create_tiled_masks( |
| 235 | + self, untiled_mask, diagonal_mask, num_views, num_anchor_views, positives_cap |
| 236 | + ) -> Tuple[Tensor, Tensor]: |
| 237 | + # Get total batch size across all processes |
| 238 | + print(untiled_mask.shape) |
| 239 | + global_batch_size = untiled_mask.size(1) |
| 240 | + |
| 241 | + # Find index of the anchor for each sample |
| 242 | + labels = torch.argmax(diagonal_mask.long(), dim=1) |
| 243 | + |
| 244 | + # Generate tiled labels across views |
| 245 | + tiled_labels = [] |
| 246 | + for i in range(num_anchor_views): |
| 247 | + tiled_labels.append(labels + global_batch_size * i) |
| 248 | + tiled_labels = torch.cat(tiled_labels, 0) |
| 249 | + tiled_diagonal_mask = F.one_hot(tiled_labels, global_batch_size * num_views) |
| 250 | + |
| 251 | + # Mask to zero the diagonal at the end |
| 252 | + all_but_diagonal_mask = 1 - tiled_diagonal_mask |
| 253 | + |
| 254 | + # All tiled positives |
| 255 | + uncapped_positives_mask = torch.tile( |
| 256 | + untiled_mask, [num_anchor_views, num_views] |
| 257 | + ) |
| 258 | + |
| 259 | + # The negatives is simply the bitflipped positives |
| 260 | + negatives_mask = 1 - uncapped_positives_mask |
| 261 | + |
| 262 | + # For when positives_cap is implemented |
| 263 | + if positives_cap > -1: |
| 264 | + raise NotImplementedError("Capping positives is not yet implemented.") |
| 265 | + else: |
| 266 | + positives_mask = uncapped_positives_mask |
| 267 | + |
| 268 | + # Zero out the self-contrast |
| 269 | + positives_mask *= all_but_diagonal_mask |
| 270 | + |
| 271 | + return positives_mask, negatives_mask |
0 commit comments