-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlib.rs
483 lines (408 loc) · 17.7 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
#![allow(non_snake_case)]
#![deny(missing_docs)]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![cfg_attr(docsrs, feature(doc_cfg))]
#![doc = include_str!("../README.md")]
#![doc = document_features::document_features!()]
use std::collections::BTreeMap;
use frost_rerandomized::RandomizedCiphersuite;
use k256::{
elliptic_curve::{
group::prime::PrimeCurveAffine,
hash2curve::{hash_to_field, ExpandMsgXmd},
sec1::{FromEncodedPoint, ToEncodedPoint},
Field as FFField, PrimeField,
},
AffinePoint, ProjectivePoint, Scalar,
};
use rand_core::{CryptoRng, RngCore};
use sha2::{Digest, Sha256};
use frost_core as frost;
#[cfg(test)]
mod tests;
// Re-exports in our public API
pub use frost_core::{serde, Ciphersuite, Field, FieldError, Group, GroupError};
pub use rand_core;
/// An error.
pub type Error = frost_core::Error<Secp256K1Sha256>;
/// An implementation of the FROST(secp256k1, SHA-256) ciphersuite scalar field.
#[derive(Clone, Copy)]
pub struct Secp256K1ScalarField;
impl Field for Secp256K1ScalarField {
type Scalar = Scalar;
type Serialization = [u8; 32];
fn zero() -> Self::Scalar {
Scalar::ZERO
}
fn one() -> Self::Scalar {
Scalar::ONE
}
fn invert(scalar: &Self::Scalar) -> Result<Self::Scalar, FieldError> {
// [`Scalar`]'s Eq/PartialEq does a constant-time comparison
if *scalar == <Self as Field>::zero() {
Err(FieldError::InvalidZeroScalar)
} else {
Ok(scalar.invert().unwrap())
}
}
fn random<R: RngCore + CryptoRng>(rng: &mut R) -> Self::Scalar {
Scalar::random(rng)
}
fn serialize(scalar: &Self::Scalar) -> Self::Serialization {
scalar.to_bytes().into()
}
fn deserialize(buf: &Self::Serialization) -> Result<Self::Scalar, FieldError> {
let field_bytes: &k256::FieldBytes = buf.into();
match Scalar::from_repr(*field_bytes).into() {
Some(s) => Ok(s),
None => Err(FieldError::MalformedScalar),
}
}
fn little_endian_serialize(scalar: &Self::Scalar) -> Self::Serialization {
let mut array = Self::serialize(scalar);
array.reverse();
array
}
}
/// An implementation of the FROST(secp256k1, SHA-256) ciphersuite group.
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct Secp256K1Group;
impl Group for Secp256K1Group {
type Field = Secp256K1ScalarField;
type Element = ProjectivePoint;
/// [SEC 1][1] serialization of a compressed point in secp256k1 takes 33 bytes
/// (1-byte prefix and 32 bytes for the coordinate).
///
/// Note that, in the SEC 1 spec, the identity is encoded as a single null byte;
/// but here we pad with zeroes. This is acceptable as the identity _should_ never
/// be serialized in FROST, else we error.
///
/// [1]: https://secg.org/sec1-v2.pdf
type Serialization = [u8; 33];
fn cofactor() -> <Self::Field as Field>::Scalar {
Scalar::ONE
}
fn identity() -> Self::Element {
ProjectivePoint::IDENTITY
}
fn generator() -> Self::Element {
ProjectivePoint::GENERATOR
}
fn serialize(element: &Self::Element) -> Self::Serialization {
let mut fixed_serialized = [0; 33];
let serialized_point = element.to_affine().to_encoded_point(true);
let serialized = serialized_point.as_bytes();
// Sanity check; either it takes all bytes or a single byte (identity).
assert!(serialized.len() == fixed_serialized.len() || serialized.len() == 1);
// Copy to the left of the buffer (i.e. pad the identity with zeroes).
// Note that identity elements shouldn't be serialized in FROST, but we
// do this padding so that this function doesn't have to return an error.
// If this encodes the identity, it will fail when deserializing.
{
let (left, _right) = fixed_serialized.split_at_mut(serialized.len());
left.copy_from_slice(serialized);
}
fixed_serialized
}
fn deserialize(buf: &Self::Serialization) -> Result<Self::Element, GroupError> {
let encoded_point =
k256::EncodedPoint::from_bytes(buf).map_err(|_| GroupError::MalformedElement)?;
match Option::<AffinePoint>::from(AffinePoint::from_encoded_point(&encoded_point)) {
Some(point) => {
if point.is_identity().into() {
// This is actually impossible since the identity is encoded a a single byte
// which will never happen since we receive a 33-byte buffer.
// We leave the check for consistency.
Err(GroupError::InvalidIdentityElement)
} else {
Ok(ProjectivePoint::from(point))
}
}
None => Err(GroupError::MalformedElement),
}
}
}
fn hash_to_array(inputs: &[&[u8]]) -> [u8; 32] {
let mut h = Sha256::new();
for i in inputs {
h.update(i);
}
let mut output = [0u8; 32];
output.copy_from_slice(h.finalize().as_slice());
output
}
fn hash_to_scalar(domain: &[u8], msg: &[u8]) -> Scalar {
let mut u = [Secp256K1ScalarField::zero()];
hash_to_field::<ExpandMsgXmd<Sha256>, Scalar>(&[msg], &[domain], &mut u)
.expect("should never return error according to error cases described in ExpandMsgXmd");
u[0]
}
/// Context string from the ciphersuite in the [spec].
///
/// [spec]: https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#section-6.5-1
const CONTEXT_STRING: &str = "FROST-secp256k1-SHA256-v1";
/// An implementation of the FROST(secp256k1, SHA-256) ciphersuite.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct Secp256K1Sha256;
/// The ciphersuite-specific signing parameters which are fed into
/// signing code to ensure correctly compliant signatures are computed.
pub type SigningParameters = ();
/// The message target which the group's signature should commit to. Includes
/// a message byte vector, and a set of ciphersuite-specific parameters.
pub type SigningTarget = frost_core::SigningTarget<Secp256K1Sha256>;
impl Ciphersuite for Secp256K1Sha256 {
const ID: &'static str = CONTEXT_STRING;
type Group = Secp256K1Group;
type HashOutput = [u8; 32];
type SignatureSerialization = [u8; 65];
type SigningParameters = ();
/// H1 for FROST(secp256k1, SHA-256)
///
/// [spec]: https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#section-6.5-2.2.2.1
fn H1(m: &[u8]) -> <<Self::Group as Group>::Field as Field>::Scalar {
hash_to_scalar((CONTEXT_STRING.to_owned() + "rho").as_bytes(), m)
}
/// H2 for FROST(secp256k1, SHA-256)
///
/// [spec]: https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#section-6.5-2.2.2.2
fn H2(m: &[u8]) -> <<Self::Group as Group>::Field as Field>::Scalar {
hash_to_scalar((CONTEXT_STRING.to_owned() + "chal").as_bytes(), m)
}
/// H3 for FROST(secp256k1, SHA-256)
///
/// [spec]: https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#section-6.5-2.2.2.3
fn H3(m: &[u8]) -> <<Self::Group as Group>::Field as Field>::Scalar {
hash_to_scalar((CONTEXT_STRING.to_owned() + "nonce").as_bytes(), m)
}
/// H4 for FROST(secp256k1, SHA-256)
///
/// [spec]: https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#section-6.5-2.2.2.4
fn H4(m: &[u8]) -> Self::HashOutput {
hash_to_array(&[CONTEXT_STRING.as_bytes(), b"msg", m])
}
/// H5 for FROST(secp256k1, SHA-256)
///
/// [spec]: https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#section-6.5-2.2.2.5
fn H5(m: &[u8]) -> Self::HashOutput {
hash_to_array(&[CONTEXT_STRING.as_bytes(), b"com", m])
}
/// HDKG for FROST(secp256k1, SHA-256)
fn HDKG(m: &[u8]) -> Option<<<Self::Group as Group>::Field as Field>::Scalar> {
Some(hash_to_scalar(
(CONTEXT_STRING.to_owned() + "dkg").as_bytes(),
m,
))
}
/// HID for FROST(secp256k1, SHA-256)
fn HID(m: &[u8]) -> Option<<<Self::Group as Group>::Field as Field>::Scalar> {
Some(hash_to_scalar(
(CONTEXT_STRING.to_owned() + "id").as_bytes(),
m,
))
}
}
impl RandomizedCiphersuite for Secp256K1Sha256 {
fn hash_randomizer(m: &[u8]) -> Option<<<Self::Group as Group>::Field as Field>::Scalar> {
Some(hash_to_scalar(
(CONTEXT_STRING.to_owned() + "randomizer").as_bytes(),
m,
))
}
}
type S = Secp256K1Sha256;
/// A FROST(secp256k1, SHA-256) participant identifier.
pub type Identifier = frost::Identifier<S>;
/// FROST(secp256k1, SHA-256) keys, key generation, key shares.
pub mod keys {
use super::*;
use std::collections::BTreeMap;
/// The identifier list to use when generating key shares.
pub type IdentifierList<'a> = frost::keys::IdentifierList<'a, S>;
/// Allows all participants' keys to be generated using a central, trusted
/// dealer.
pub fn generate_with_dealer<RNG: RngCore + CryptoRng>(
max_signers: u16,
min_signers: u16,
identifiers: IdentifierList,
mut rng: RNG,
) -> Result<(BTreeMap<Identifier, SecretShare>, PublicKeyPackage), Error> {
frost::keys::generate_with_dealer(max_signers, min_signers, identifiers, &mut rng)
}
/// Splits an existing key into FROST shares.
///
/// This is identical to [`generate_with_dealer`] but receives an existing key
/// instead of generating a fresh one. This is useful in scenarios where
/// the key needs to be generated externally or must be derived from e.g. a
/// seed phrase.
pub fn split<R: RngCore + CryptoRng>(
secret: &SigningKey,
max_signers: u16,
min_signers: u16,
identifiers: IdentifierList,
rng: &mut R,
) -> Result<(BTreeMap<Identifier, SecretShare>, PublicKeyPackage), Error> {
frost::keys::split(secret, max_signers, min_signers, identifiers, rng)
}
/// Recompute the secret from t-of-n secret shares using Lagrange interpolation.
///
/// This can be used if for some reason the original key must be restored; e.g.
/// if threshold signing is not required anymore.
///
/// This is NOT required to sign with FROST; the whole point of FROST is being
/// able to generate signatures only using the shares, without having to
/// reconstruct the original key.
///
/// The caller is responsible for providing at least `min_signers` shares;
/// if less than that is provided, a different key will be returned.
pub fn reconstruct(secret_shares: &[KeyPackage]) -> Result<SigningKey, Error> {
frost::keys::reconstruct(secret_shares)
}
/// Secret and public key material generated by a dealer performing
/// [`generate_with_dealer`].
///
/// # Security
///
/// To derive a FROST(secp256k1, SHA-256) keypair, the receiver of the [`SecretShare`] *must* call
/// .into(), which under the hood also performs validation.
pub type SecretShare = frost::keys::SecretShare<S>;
/// A secret scalar value representing a signer's share of the group secret.
pub type SigningShare = frost::keys::SigningShare<S>;
/// A public group element that represents a single signer's public verification share.
pub type VerifyingShare = frost::keys::VerifyingShare<S>;
/// A FROST(secp256k1, SHA-256) keypair, which can be generated either by a trusted dealer or using
/// a DKG.
///
/// When using a central dealer, [`SecretShare`]s are distributed to
/// participants, who then perform verification, before deriving
/// [`KeyPackage`]s, which they store to later use during signing.
pub type KeyPackage = frost::keys::KeyPackage<S>;
/// Public data that contains all the signers' public keys as well as the
/// group public key.
///
/// Used for verification purposes before publishing a signature.
pub type PublicKeyPackage = frost::keys::PublicKeyPackage<S>;
/// Contains the commitments to the coefficients for our secret polynomial _f_,
/// used to generate participants' key shares.
///
/// [`VerifiableSecretSharingCommitment`] contains a set of commitments to the coefficients (which
/// themselves are scalars) for a secret polynomial f, where f is used to
/// generate each ith participant's key share f(i). Participants use this set of
/// commitments to perform verifiable secret sharing.
///
/// Note that participants MUST be assured that they have the *same*
/// [`VerifiableSecretSharingCommitment`], either by performing pairwise comparison, or by using
/// some agreed-upon public location for publication, where each participant can
/// ensure that they received the correct (and same) value.
pub type VerifiableSecretSharingCommitment = frost::keys::VerifiableSecretSharingCommitment<S>;
pub mod dkg;
pub mod repairable;
}
/// FROST(secp256k1, SHA-256) Round 1 functionality and types.
pub mod round1 {
use crate::keys::SigningShare;
use super::*;
/// Comprised of FROST(secp256k1, SHA-256) hiding and binding nonces.
///
/// Note that [`SigningNonces`] must be used *only once* for a signing
/// operation; re-using nonces will result in leakage of a signer's long-lived
/// signing key.
pub type SigningNonces = frost::round1::SigningNonces<S>;
/// Published by each participant in the first round of the signing protocol.
///
/// This step can be batched if desired by the implementation. Each
/// SigningCommitment can be used for exactly *one* signature.
pub type SigningCommitments = frost::round1::SigningCommitments<S>;
/// A commitment to a signing nonce share.
pub type NonceCommitment = frost::round1::NonceCommitment<S>;
/// Performed once by each participant selected for the signing operation.
///
/// Generates the signing nonces and commitments to be used in the signing
/// operation.
pub fn commit<RNG>(secret: &SigningShare, rng: &mut RNG) -> (SigningNonces, SigningCommitments)
where
RNG: CryptoRng + RngCore,
{
frost::round1::commit::<S, RNG>(secret, rng)
}
}
/// Generated by the coordinator of the signing operation and distributed to
/// each signing party.
pub type SigningPackage = frost::SigningPackage<S>;
/// FROST(secp256k1, SHA-256) Round 2 functionality and types, for signature share generation.
pub mod round2 {
use super::*;
/// A FROST(secp256k1, SHA-256) participant's signature share, which the Coordinator will aggregate with all other signer's
/// shares into the joint signature.
pub type SignatureShare = frost::round2::SignatureShare<S>;
/// Performed once by each participant selected for the signing operation.
///
/// Receives the message to be signed and a set of signing commitments and a set
/// of randomizing commitments to be used in that signing operation, including
/// that for this participant.
///
/// Assumes the participant has already determined which nonce corresponds with
/// the commitment that was assigned by the coordinator in the SigningPackage.
pub fn sign(
signing_package: &SigningPackage,
signer_nonces: &round1::SigningNonces,
key_package: &keys::KeyPackage,
) -> Result<SignatureShare, Error> {
frost::round2::sign(signing_package, signer_nonces, key_package)
}
/// Spark custom signing operation.
pub fn sign_spark(
signing_package: &SigningPackage,
signer_nonces: &round1::SigningNonces,
key_package: &keys::KeyPackage,
inner_coef_set_x: &std::collections::BTreeSet<Identifier>,
outer_coef_set_x: Option<&std::collections::BTreeSet<Identifier>>,
outer_signer_id: Option<&Identifier>,
verifiying_key: &VerifyingKey,
) -> Result<SignatureShare, Error> {
frost::round2::sign_spark(
signing_package,
signer_nonces,
key_package,
inner_coef_set_x,
outer_coef_set_x,
outer_signer_id,
verifiying_key,
)
}
}
/// A Schnorr signature on FROST(secp256k1, SHA-256).
pub type Signature = frost_core::Signature<S>;
/// Verifies each FROST(secp256k1, SHA-256) participant's signature share, and if all are valid,
/// aggregates the shares into a signature to publish.
///
/// Resulting signature is compatible with verification of a plain Schnorr
/// signature.
///
/// This operation is performed by a coordinator that can communicate with all
/// the signing participants before publishing the final signature. The
/// coordinator can be one of the participants or a semi-trusted third party
/// (who is trusted to not perform denial of service attacks, but does not learn
/// any secret information). Note that because the coordinator is trusted to
/// report misbehaving parties in order to avoid publishing an invalid
/// signature, if the coordinator themselves is a signer and misbehaves, they
/// can avoid that step. However, at worst, this results in a denial of
/// service attack due to publishing an invalid signature.
pub fn aggregate(
signing_package: &SigningPackage,
signature_shares: &BTreeMap<Identifier, round2::SignatureShare>,
pubkeys: &keys::PublicKeyPackage,
) -> Result<Signature, Error> {
frost::aggregate(signing_package, signature_shares, pubkeys)
}
/// Spark
pub fn aggregate_spark(
signing_package: &SigningPackage,
signature_shares: &BTreeMap<Identifier, round2::SignatureShare>,
verifying_key: &VerifyingKey,
) -> Result<Signature, Error> {
frost::aggregate_spark(signing_package, signature_shares, verifying_key)
}
/// A signing key for a Schnorr signature on FROST(secp256k1, SHA-256).
pub type SigningKey = frost_core::SigningKey<S>;
/// A valid verifying key for Schnorr signatures on FROST(secp256k1, SHA-256).
pub type VerifyingKey = frost_core::VerifyingKey<S>;