forked from open-mmlab/mmagic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
114 lines (97 loc) · 4.26 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import logging
import os
import os.path as osp
from mmengine.config import Config, DictAction
from mmengine.runner import Runner
from mmagic.utils import print_colored_log
def parse_args():
parser = argparse.ArgumentParser(description='Train a model')
parser.add_argument('config', help='train config file path')
parser.add_argument('--work-dir', help='the dir to save logs and models')
parser.add_argument(
'--resume', action='store_true', help='Whether to resume checkpoint.')
parser.add_argument(
'--amp',
action='store_true',
default=False,
help='enable automatic-mixed-precision training')
parser.add_argument(
'--auto-scale-lr',
action='store_true',
help='enable automatically scaling LR.')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
# When using PyTorch version >= 2.0.0, the `torch.distributed.launch`
# will pass the `--local-rank` parameter to `tools/train.py` instead
# of `--local_rank`.
parser.add_argument('--local_rank', '--local-rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def main():
args = parse_args()
# load config
cfg = Config.fromfile(args.config)
cfg.launcher = args.launcher
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# work_dir is determined in this priority: CLI > segment in file > filename
if args.work_dir: # none or empty str
# update configs according to CLI args if args.work_dir is not None
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
# use config filename as default work_dir if cfg.work_dir is None
cfg.work_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(args.config))[0])
# enable automatic-mixed-precision training
if args.amp is True:
if ('constructor' not in cfg.optim_wrapper) or \
cfg.optim_wrapper['constructor'] == 'DefaultOptimWrapperConstructor': # noqa
optim_wrapper = cfg.optim_wrapper.type
if optim_wrapper == 'AmpOptimWrapper':
print_colored_log(
'AMP training is already enabled in your config.',
logger='current',
level=logging.WARNING)
else:
assert optim_wrapper == 'OptimWrapper', (
'`--amp` is only supported when the optimizer wrapper '
f'`type is OptimWrapper` but got {optim_wrapper}.')
cfg.optim_wrapper.type = 'AmpOptimWrapper'
cfg.optim_wrapper.loss_scale = 'dynamic'
else:
for key, val in cfg.optim_wrapper.items():
if isinstance(val, dict) and 'type' in val:
assert val.type == 'OptimWrapper', (
'`--amp` is only supported when the optimizer wrapper '
f'`type is OptimWrapper` but got {val.type}.')
cfg.optim_wrapper[key].type = 'AmpOptimWrapper'
cfg.optim_wrapper[key].loss_scale = 'dynamic'
if args.resume:
cfg.resume = True
# build the runner from config
runner = Runner.from_cfg(cfg)
print_colored_log(f'Working directory: {cfg.work_dir}')
print_colored_log(f'Log directory: {runner._log_dir}')
# start training
runner.train()
print_colored_log(f'Log saved under {runner._log_dir}')
print_colored_log(f'Checkpoint saved under {cfg.work_dir}')
if __name__ == '__main__':
main()