|
1 |
| -_base_ = './cityscapes_detection.py' |
| 1 | +dataset_type = 'CityscapesDataset' |
| 2 | +data_root = 'data/cityscapes/' |
2 | 3 | img_norm_cfg = dict(
|
3 | 4 | mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
4 | 5 | train_pipeline = [
|
|
12 | 13 | dict(type='DefaultFormatBundle'),
|
13 | 14 | dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
|
14 | 15 | ]
|
15 |
| -data = dict(train=dict(dataset=dict(pipeline=train_pipeline))) |
| 16 | +test_pipeline = [ |
| 17 | + dict(type='LoadImageFromFile'), |
| 18 | + dict( |
| 19 | + type='MultiScaleFlipAug', |
| 20 | + img_scale=(2048, 1024), |
| 21 | + flip=False, |
| 22 | + transforms=[ |
| 23 | + dict(type='Resize', keep_ratio=True), |
| 24 | + dict(type='RandomFlip'), |
| 25 | + dict(type='Normalize', **img_norm_cfg), |
| 26 | + dict(type='Pad', size_divisor=32), |
| 27 | + dict(type='ImageToTensor', keys=['img']), |
| 28 | + dict(type='Collect', keys=['img']), |
| 29 | + ]) |
| 30 | +] |
| 31 | +data = dict( |
| 32 | + samples_per_gpu=1, |
| 33 | + workers_per_gpu=2, |
| 34 | + train=dict( |
| 35 | + type='RepeatDataset', |
| 36 | + times=8, |
| 37 | + dataset=dict( |
| 38 | + type=dataset_type, |
| 39 | + ann_file=data_root + |
| 40 | + 'annotations/instancesonly_filtered_gtFine_train.json', |
| 41 | + img_prefix=data_root + 'leftImg8bit/train/', |
| 42 | + pipeline=train_pipeline)), |
| 43 | + val=dict( |
| 44 | + type=dataset_type, |
| 45 | + ann_file=data_root + |
| 46 | + 'annotations/instancesonly_filtered_gtFine_val.json', |
| 47 | + img_prefix=data_root + 'leftImg8bit/val/', |
| 48 | + pipeline=test_pipeline), |
| 49 | + test=dict( |
| 50 | + type=dataset_type, |
| 51 | + ann_file=data_root + |
| 52 | + 'annotations/instancesonly_filtered_gtFine_test.json', |
| 53 | + img_prefix=data_root + 'leftImg8bit/test/', |
| 54 | + pipeline=test_pipeline)) |
16 | 55 | evaluation = dict(metric=['bbox', 'segm'])
|
0 commit comments