Skip to content

Commit 2eedc39

Browse files
authoredJul 23, 2021
Release 0.4.2
* Add return value for ElGamal homomorphic multiplicative scheme * Added bash/zsh to README.md * ElGamal homomorphic multiplicative decryption with identical random value * ElGamal baby-step giant-step
1 parent 5068871 commit 2eedc39

File tree

3 files changed

+119
-0
lines changed

3 files changed

+119
-0
lines changed
 

‎README.md

+1
Original file line numberDiff line numberDiff line change
@@ -31,6 +31,7 @@ Before you can start installing or using packages in your virtual environment yo
3131

3232
| Command-line | Script |
3333
|-----------------|----------------------------------------------|
34+
| bash/zsh | $ source <venv>/bin/activate |
3435
| fish | $ source <venv>/bin/activate.fish |
3536
| csh/tcsh | $ source <venv>/bin/activate.csh |
3637
| PowerShell Core | $ <venv>/bin/Activate.ps1 |

‎cryptographic_functions/elgamal_calculations.py

+114
Original file line numberDiff line numberDiff line change
@@ -2,6 +2,7 @@
22

33
from cryptographic_functions import modulo_inverse_multiplicative
44
from cryptographic_functions import shared_functions
5+
from math import ceil, sqrt
56
from tabulate import tabulate
67
import random
78

@@ -297,6 +298,7 @@ def homomorphic_multiplicative_scheme(public_key, private_key, c_1, c_2, print_m
297298
f'<AUXILIARY 1>Achtung: Die Namen der Variablen können abweichen!</AUXILIARY 1>\n'
298299
f'm = {a_i} * {(b_1 * b_2) % p}\n'
299300
f'm = {m}', end='\n\n')
301+
return m
300302

301303

302304
# ElGamal homomorphic multiplicative decryption
@@ -360,3 +362,115 @@ def homomorphic_multiplicative_decryption(public_key, private_key, m_1, c_1, c_2
360362
f'{m} = {m_1} * {m_2} mod {p}\n'
361363
f'{m} = {(m_1 * m_2) % p}', end='\n\n')
362364
return m_2
365+
366+
367+
# ElGamal homomorphic multiplicative decryption with identical random value
368+
def homomorphic_multiplicative_decryption_k(public_key, m_1, c_1, c_2, print_matrix=False,
369+
print_linear_factorization=True):
370+
print(tabulate([['Homomorphe multiplikative Entschlüsselung mit identischem Zufallswert']], tablefmt='fancy_grid'))
371+
372+
# Unpack the public key into its components
373+
p, g, e = public_key
374+
375+
# Unpack both ciphertexts into its components
376+
a_1, b_1 = c_1
377+
a_2, b_2 = c_2
378+
379+
# Calculation of m_2 assuming that the random numbers of both ciphertexts are identical
380+
b_1_i = modulo_inverse_multiplicative.mim(p, b_1, print_matrix, print_linear_factorization, 1)
381+
m_2 = (b_1_i * b_2 * m_1) % p
382+
383+
# Calculation of m_1_i
384+
m_1_i = modulo_inverse_multiplicative.mim(p, m_1, print_matrix, print_linear_factorization, 2)
385+
386+
# Calculation path output
387+
print(
388+
f'Gegeben sind K(pub) = {{p, g, e}} = {{{p}, {g}, {e}}} mit den Geheimtexten c_1 = {{a_1, b_1}} = '
389+
f'{{{a_1}, {b_1}}} und c_2 = {{a_2, b_2}} = {{{a_2}, {b_2}}}. Ebenfalls bekannt ist der zu c_1 zugehörige '
390+
f'Klartext m_1 = {m_1}. Unter Ausnutzung des Zugriffs auf die Verschlüsselungsfunktion mit einem identischen '
391+
f'Zufallswert k für die Berechnung der Geheimtexte kann nun der Klartext m_2 des Geheimtextes c_2 ermittelt '
392+
f'werden.', end='\n\n')
393+
print(
394+
f'Der zum Geheimtext c_2 gehörende Klartext m_2 ergibt sich aus:\n'
395+
f'm_2 = b_1^-1 * b_2 * m_1 mod p\n'
396+
f'<AUXILIARY 1>Achtung: Die Namen der Variablen können abweichen!</AUXILIARY 1>\n'
397+
f'm_2 = {b_1_i} * {b_2} * {m_1} mod {p}\n'
398+
f'm_2 = {b_1_i * b_2 * m_1} mod {p}\n'
399+
f'm_2 = {m_2}', end='\n\n')
400+
print(
401+
f'Verifikation:\n'
402+
f'b_1^-1 * b_2 = m_1^-1 * m_2 mod p\n'
403+
f'<AUXILIARY 2>Achtung: Die Namen der Variablen können abweichen!</AUXILIARY 2>\n'
404+
f'{b_1_i} * {b_2} = {m_1_i} * {m_2} mod {p}\n'
405+
f'{(b_1_i * b_2) % p} = {(m_1_i * m_2) % p}', end='\n\n')
406+
return m_2
407+
408+
409+
# ElGamal baby-step giant-step
410+
def bsgs(public_key, print_matrix=False, print_linear_factorization=True):
411+
print(tabulate([['ElGamal Babystep-Giantstep-Algorithmus']], tablefmt='fancy_grid'))
412+
413+
# Unpack the public key into its components
414+
p, g, e = public_key
415+
416+
# Print calculation message
417+
print('Berechnung, bitte warten...', end='\r')
418+
419+
# Calculation of g_i
420+
g_i = modulo_inverse_multiplicative.mim(p, g, print_matrix, print_linear_factorization, 1)
421+
422+
# Calculation of m
423+
m = ceil(sqrt(p - 1))
424+
425+
# Calculation of g^{0...(m-1)} mod p (baby-step)
426+
tab = {(g ** r) % p: r for r in range(m)}
427+
428+
# Calculation of y
429+
y = (g ** (m * (p - 2))) % p
430+
431+
# Find match in table (giant-step)
432+
for q in range(m):
433+
z = (e * (y ** q)) % p
434+
if z in tab:
435+
d = q * m + tab[z]
436+
break
437+
438+
# Removal of the calculation message
439+
print(' ' * len('Berechnung, bitte warten...'), end='\r')
440+
441+
# The value of p must be identical in both keys
442+
if not 'd' in locals():
443+
print(f'Der zum öffentlichen Schlüssel K(pub) = {{p, g, e}} = {{{p}, {g}, {e}}} zugehörige private Schlüssel '
444+
f'K(priv) = {{p, d}} konnte nicht mittels des Babystep-Giantstep-Algorithmus bestimmt werden.')
445+
return -1
446+
447+
# Calculation path output
448+
print(
449+
f'Gegeben ist der öffentliche Schlüssel K(pub) = {{p, g, e}} = {{{p}, {g}, {e}}}. Unter Verwendung des'
450+
f'Babystep-Giantstep-Algorithmus zur Berechnung des diskreten Logarithmus im endlichen Zahlenkörper wird '
451+
f'nachfolgend der private Schlüssel K(priv) = {{p, d}} bestimmt.', end='\n\n')
452+
print(
453+
f'Zunächst ist die Menge der Paare M = {{(e * g^-r, r) | 0 ≤ r < m}} mod p zu bestimmen.\n'
454+
f'm = ⌈√(p - 1)⌉\n'
455+
f'm = ⌈√({p - 1})⌉\n'
456+
f'm = ⌈{sqrt(p - 1)}\n'
457+
f'm = {m}', end='\n\n')
458+
print(
459+
f'Dabei ergibt sich die folgende Menge der Paare über (e * g^-r, r) mod p\n'
460+
f'<AUXILIARY 1>Achtung: Die Namen der Variablen können abweichen!</AUXILIARY 1>\n'
461+
f'({e} * {g}^-{0}, {0}) = ({e} * {g_i ** 0}, {0}) = ({(e * (g_i ** 0)) % p}, {0}) mod {p}\n'
462+
f'[...]\n'
463+
f'({e} * {g}^-{d - 1}, {d - 1}) = ({e} * ({g}^-1)^{d - 1}, {d - 1}) = ({e} * {g_i}^{d - 1}, {d - 1}) = '
464+
f'({(e * (g_i ** (d - 1))) % p}, {d - 1}) mod {p}\n'
465+
f'({e} * {g}^-{d}, {d}) = ({e} * ({g}^-1)^{d}, {d}) = ({e} * {g_i}^{d}, {d}) = ({(e * (g_i ** d)) % p}, {d}) '
466+
f'mod {p}', end='\n\n')
467+
print(
468+
f'Dabei ist zu erkennen, dass das Paar ({(e * (g_i ** d)) % p}, {d}) die Lösung für den diskreten Logarithmus '
469+
f'darstellt. Folglich entspricht der private Schlüssel K(priv) = {{p, d}} = {{{p}, {d}}}.', end='\n\n')
470+
print(
471+
f'Verifikation mit K(pub) = {{p, g, e}} = {{{p}, {g}, {e}}}:\n'
472+
f'e = g^d mod p\n'
473+
f'e = {g}^{d} mod {p}\n'
474+
f'e = {(g ** d) % p}\n'
475+
f'{e} = {(g ** d) % p}', end='\n\n')
476+
return d

‎main.py

+4
Original file line numberDiff line numberDiff line change
@@ -116,6 +116,10 @@
116116
# elgamal_homomorphic_m_1, elgamal_homomorphic_c_1,
117117
# elgamal_homomorphic_c_2, print_matrix,
118118
# print_linear_factorization)
119+
# elgamal_calculations.homomorphic_multiplicative_decryption_k(elgamal_public_key, elgamal_homomorphic_m_1,
120+
# elgamal_homomorphic_c_1, elgamal_homomorphic_c_2,
121+
# print_matrix, print_linear_factorization)
122+
# elgamal_calculations.bsgs(elgamal_public_key, print_matrix, print_linear_factorization)
119123

120124
#########################################
121125
# Fermat's factorization initial values #

0 commit comments

Comments
 (0)