-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
130 lines (111 loc) · 5.03 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# models.py
from sklearn.linear_model import LinearRegression
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LSTM, Dropout
from sklearn.svm import SVR
from xgboost import XGBRegressor
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
import numpy as np
import matplotlib.pyplot as plt
from config import *
class TradingStrategy:
def __init__(self, model, feature_extractor, threshold=0.001):
self.model = model
self.feature_extractor = feature_extractor
self.threshold = threshold
def generate_signal(self, y_pred, y_true, threshold=0.001):
"""Generate trading signal based on the model's prediction"""
signal = 1 if y_pred > y_true + threshold else -1 if y_pred < y_true - threshold else 0
return signal
class ModelTrainer:
def __init__(self, X):
self.models = {
'Linear Regression': LinearRegression(),
'XGBoost': self.build_xgboost_model(),
'SVR': self.build_svr_model(),
'LSTM': self.build_lstm_model(input_shape=(X.shape[1], X.shape[2])),
}
self.metrics = {}
def build_lstm_model(self, input_shape):
"""Build LSTM model"""
model = Sequential([
LSTM(units=50, return_sequences=True, input_shape=input_shape),
Dropout(0.2),
LSTM(units=50, return_sequences=False),
Dropout(0.2),
Dense(units=25),
Dense(units=1)
])
model.compile(optimizer='adam', loss='mse')
return model
def build_xgboost_model(self):
"""Build XGBoost model"""
return XGBRegressor(
objective='reg:squarederror',
n_estimators=100,
learning_rate=0.1,
max_depth=5,
random_state=42
)
def build_svr_model(self):
"""Build SVR model"""
return SVR(kernel='rbf', C=1.0, epsilon=0.1)
def train_evaluate(self, X_train, X_test, y_train, y_test, X_seq_train, X_seq_test, y_seq_train, y_seq_test):
results = {}
for name, model in self.models.items():
# Train model and make predictions
if name == 'LSTM':
model.fit(X_seq_train, y_seq_train, epochs=10, batch_size=32)
y_train_pred = model.predict(X_seq_train)
y_test_pred = model.predict(X_seq_test)
results[name] = {
'train': self._calculate_metrics(y_seq_train, y_train_pred),
'test': self._calculate_metrics(y_seq_test, y_test_pred)
}
else:
model.fit(X_train, y_train)
y_train_pred = model.predict(X_train)
y_test_pred = model.predict(X_test)
results[name] = {
'train': self._calculate_metrics(y_train, y_train_pred),
'test': self._calculate_metrics(y_test, y_test_pred)
}
# Store prediction to csv
np.savetxt(f'{DATA_DIR}/{name}_train_pred.csv', y_train_pred, delimiter=',')
np.savetxt(f'{DATA_DIR}/{name}_test_pred.csv', y_test_pred, delimiter=',')
self._plot_results(results)
return results
def _calculate_metrics(self, y_true, y_pred):
return {
'Accuracy': self._calculate_signals_accuracy(y_pred, y_true),
'MSE': mean_squared_error(y_true, y_pred),
'RMSE': np.sqrt(mean_squared_error(y_true, y_pred)),
'MAE': mean_absolute_error(y_true, y_pred),
'R2': r2_score(y_true, y_pred)
}
def _calculate_signals_accuracy(self, y_pred, y_true):
correct_signals = np.sum((np.sign(y_pred)==np.sign(y_true)) & (np.abs(y_pred - y_true)/np.abs(y_true) < 0.00005))
print(f'Correct signals: {correct_signals}/{len(y_true)}')
return correct_signals / len(y_true)
def _plot_results(self, results):
metrics = ['MSE', 'RMSE', 'MAE', 'R2']
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
for idx, metric in enumerate(metrics):
ax = axes[idx//2, idx%2]
data = []
for model_name in results.keys():
data.append([
results[model_name]['train'][metric],
results[model_name]['test'][metric]
])
x = np.arange(len(results.keys()))
width = 0.25
ax.bar(x - width, [d[0] for d in data], width, label='Train')
ax.bar(x + width, [d[1] for d in data], width, label='Test')
ax.set_title(f'{metric} Comparison')
ax.set_xticks(x)
ax.set_xticklabels(results.keys())
ax.legend()
plt.tight_layout()
plt.savefig(f'{PLOTS_DIR}/model_comparison.png')
plt.close()