-
Notifications
You must be signed in to change notification settings - Fork 471
/
Copy pathdagger_code_interpreter.py
241 lines (189 loc) · 5.47 KB
/
dagger_code_interpreter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# /// script
# requires-python = ">=3.12"
# dependencies = [
# "dagger-io==0.14.0",
# "ell-ai==0.0.14",
# "marimo",
# "openai==1.55.0",
# "pydantic==2.8.2",
# ]
# ///
import marimo
__generated_with = "0.9.20"
app = marimo.App(width="medium")
@app.cell(hide_code=True)
def __():
import marimo as mo
import ell
import textwrap
return ell, mo, textwrap
@app.cell(hide_code=True)
def __(mo):
mo.md(
"""
# Chatbot code-interpreter with [Dagger](https://dagger.io/)
This example shows how to create a code-interpreter that executes code using [Dagger](https://dagger.io/) so the code is run in an isolated container.
This example requires Docker running on your computer.
"""
)
return
@app.cell(hide_code=True)
def __(mo):
backend = mo.ui.dropdown(["ollama", "openai"], label="Backend", value="openai")
backend
return (backend,)
@app.cell(hide_code=True)
def __(mo):
# OpenAI config
import os
import openai
input_key = mo.ui.text(
label="OpenAI API key",
kind="password",
value=os.environ.get("OPENAI_API_KEY", ""),
)
input_key
return input_key, openai, os
@app.cell(hide_code=True)
def __(backend, input_key, mo):
def _get_open_ai_client():
openai_key = input_key.value
import openai
mo.stop(
not openai_key,
mo.md(
"Please set the `OPENAI_API_KEY` environment variable or provide it in the input field"
),
)
return openai.Client(api_key=openai_key)
def _get_ollama_client():
import openai
return openai.Client(
api_key="ollama",
base_url="http://localhost:11434/v1",
)
client = (
_get_ollama_client()
if backend.value == "ollama"
else _get_open_ai_client()
)
model = "llama3.1" if backend.value == "ollama" else "gpt-4-turbo"
return client, model
@app.cell
def __():
import dagger
return (dagger,)
@app.cell
def __(mo):
files = mo.ui.file(kind="area")
files
return (files,)
@app.cell
def __(mo):
packages = mo.ui.text_area(label="Packages", value="pandas")
packages
return (packages,)
@app.cell
def __(files):
[file.name for file in files.value]
return
@app.cell
def __(dagger, ell, files, mo, packages):
@ell.tool()
async def execute_code(code: str):
"""
Execute python using Dagger. You MUST have print() in the last expression.
"""
async with dagger.Connection() as _dag:
container = (
_dag.container()
.from_("python:3.12-slim")
.with_new_file("/app/script.py", contents=code)
.with_new_file("/app/requirements.txt", contents=packages.value)
.with_exec(["pip", "install", "-r", "/app/requirements.txt"])
)
for file in files.value:
container = container.with_new_file(
f"/app/{file.name}", contents=file.contents.decode("utf-8")
)
result = (
await container.with_workdir("/app")
.with_exec(["python", "/app/script.py"])
.stdout()
)
return mo.vstack(
[
mo.ui.code_editor(code, language="python", disabled=True),
mo.md(result),
]
)
return (execute_code,)
@app.cell(hide_code=True)
def __():
def describe_file(file):
if file.name.endswith(".py"):
return f"Python file: {file.name}"
if file.name.endswith(".txt"):
return f"Text file: {file.name}"
if file.name.endswith(".csv"):
return f"CSV file: {file.name}. Headers: {file.contents.decode('utf-8').splitlines()[0]}"
return f"File: {file.name}"
return (describe_file,)
@app.cell
def __(
client,
describe_file,
ell,
execute_code,
files,
mo,
model,
packages,
):
files_instructions = ""
packages_instructions = ""
if files.value:
files_instructions = f"""
Here are the files you can access:"
{"\n".join([describe_file(file) for file in files.value])}
"""
if packages.value:
packages_instructions = f"""
Here are the python packages you can access:"
{packages.value}
"""
@ell.complex(
model=model,
tools=[execute_code],
client=client,
)
def custom_chatbot(messages, config) -> str:
system_message = ell.system(f"""
You are data scientist with access to writing python code.
{files_instructions}
{packages_instructions}
""")
return [system_message] + [
ell.user(message.content)
if message.role == "user"
else ell.assistant(message.content)
for message in messages
]
def my_model(messages, config):
response = custom_chatbot(messages, config)
if response.tool_calls:
return response.tool_calls[0]()
return mo.md(response.text)
return custom_chatbot, files_instructions, my_model, packages_instructions
@app.cell
def __(mo, my_model):
mo.ui.chat(
my_model,
prompts=[
"What is the square root of {{number}}?",
f"Can you sum this list using python: {list(range(1, 10))}",
],
)
return
if __name__ == "__main__":
app.run()