-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevolutionary_algorithm.py
143 lines (117 loc) · 5.28 KB
/
evolutionary_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from GroupOfPeople import GroupOfPeople
from Types import RulesQuarantine
import random
import const
import save_data as save
import one_run
def run_generations(initial_population):
"""
Runs NUMBER_OF_GENERATIONS amount of generations. For each individual in the generation, update
TIME_STEP_GROUPOFPEOPLE time steps, then get the fitness. Sorts the individuals by fitness score.
Get the brief statistics of all the individuals. Create the next population from the parents.
:param initial_population: list of instances of GroupOfPeople with length population_size
"""
all_individuals = []
current_population = initial_population
data = {}
for generation in range(const.NUMBER_OF_GENERATIONS):
data['generation' + str(generation + 1)] = []
print(f"\nGeneration %g:" % (generation+1))
for i in range(const.POPULATION_SIZE):
for step in range(const.TIME_STEPS_GROUPOFPEOPLE):
current_population[i].update()
current_population[i].get_fitness()
current_population.sort(key=lambda gop: gop.fitness, reverse=True)
current_population_statistics = []
for i in range(const.POPULATION_SIZE):
current_population_statistics.append(current_population[i].get_brief_statistics())
data['generation' + str(generation + 1)].append(current_population[i].get_visualization_statistics())
print("\nIndividual %i:" % (i+1))
print(f"Fitness: %f" % (current_population_statistics[i]['fitness']))
print("Parameters: ")
print(current_population_statistics[i])
all_individuals.append(current_population_statistics)
parents = current_population_statistics[:const.NUMBER_OF_PARENTS]
current_population = create_population(parents)
save.write_to_json(data, 'data/generation_' + str(generation + 1) + '.json')
save.write_to_json(data, 'data/all_data.json')
one_run.one_run(const.X, const.Y, parents[0]["healthcare"],parents[0]["hygiene"],parents[0]["mask"],
parents[0]["distancing"],parents[0]["curfew"],parents[0]["test_rate"],
parents[0]["quarantine_rules"],parents[0]["isolation_rules"])
def create_population(parents):
"""
Creates a new population with population_size amount of offsprings, from parents
:param parents: list of dicts, of length number_of_parents - each dict is the statistics for one instance of GroupOfPoeple
:return: list of instances of GroupOfPeople with length population_size
"""
new_population = []
for new_offspring in range(const.POPULATION_SIZE):
crossover_genes = crossover(parents)
offspring_genes = mutation(crossover_genes)
offspring = GroupOfPeople(offspring_genes['x'],offspring_genes['y'],offspring_genes['healthcare'],
offspring_genes['hygiene'],offspring_genes['mask'],offspring_genes['distancing'],
offspring_genes['curfew'],offspring_genes['test_rate'],
RulesQuarantine(offspring_genes['quarantine_rules']),
RulesQuarantine(offspring_genes['isolation_rules']))
new_population.append(offspring)
return new_population
def crossover(parents):
"""
Does crossover by choosing genes randomly from the parents, with a probability of each parents gene being chosen
given by the parent_weights list
:param parents: list of dict, of length number_of_parents - each dict is the statistics for one instance of GroupOfPoeple
:return: dict - containing a full set of genes which is a crossover of the parents genes
"""
crossover_genes = {}
parent_weights = set_parent_weights(parents)
for gene in const.GENE_TYPES:
parent_for_this_gene = parent_weights[random.randint(0,len(parent_weights)-1)]
value = parents[parent_for_this_gene][gene]
crossover_genes[gene] = value
return crossover_genes
def mutation(chromosome):
"""
mutates each gene in a set of genes, each with a probability of mutation_probability. If mutation is chosen the gene
will mutate a maximum of max_mutation
:param chromosome: dict - one full set of genes
:return: dict - one full set of genes
"""
mutated_genes = {'x':const.X, 'y':const.Y}
for gene_type in const.GENE_TYPES:
if gene_type != 'quarantine_rules' and gene_type != 'isolation_rules':
value = chromosome[gene_type]
if random.uniform(0,1) < const.MUTATION_PROBABILITY:
new_value = random.uniform(value - const.MAX_MUTATION, value + const.MAX_MUTATION)
if new_value > 1:
new_value = 1
elif new_value < 0:
new_value = 0
mutated_genes[gene_type] = new_value
else:
mutated_genes[gene_type] = value
else:
value = chromosome[gene_type].value
if random.uniform(0,1) < const.MUTATION_PROBABILITY:
new_value = random.randint(value-1,value+1)
if new_value > 4:
new_value = 4
elif new_value < 0:
new_value = 0
mutated_genes[gene_type] = new_value
else:
mutated_genes[gene_type] = value
return mutated_genes
def set_parent_weights(parents):
"""
Creates a list with fitness/FITNESS_ACCURACY number of instances for each of the parents,
for having higher probability of choosing genes of a parent if the parent has high fitness.
:param parents: list of dict, of length number_of_parents - each dict is the statistics for one instance of GroupOfPoeple
:return: list of int
"""
parent_weights = []
for i in range(const.NUMBER_OF_PARENTS):
fitness = parents[i]['fitness']
probability_of_parent = fitness//const.FITNESS_ACCURACY
for j in range(probability_of_parent):
parent_weights.append(i)
return parent_weights