-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathmain.py
738 lines (578 loc) · 28.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
import argparse
import os
import random
import time
import unicodedata
from functools import partial
import torch
from torch import nn
from tqdm import tqdm
from model import HRLModel, PAD_token, EOS_token
from utils import AverageMeter
from utils import VisualizeLogger
from utils import get_logger
import numpy as np
USE_CUDA = torch.cuda.is_available()
global_step = 0
class Lang:
def __init__(self, name):
self.name = name
self.trimmed = False
self.word2index = {"x1": 3, "x2": 4, "x3": 5, "x4": 6}
self.word2count = {}
self.index2word = {0: "PAD", 1: "SOS", 2: "EOS", 3: "x1", 4: "x2", 5: "x3", 6: "x4"}
self.n_words = 7 # Count default tokens
def vocab_size(self):
return len(self.word2index.keys())
def index_words(self, sentence):
for word in sentence.split(' '):
self.index_word(word)
def index_word(self, word):
if word not in self.word2index:
self.word2index[word] = self.n_words
self.word2count[word] = 1
self.index2word[self.n_words] = word
self.n_words += 1
else:
self.word2count[word] += 1
# Remove words below a certain count threshold
def trim(self, min_count):
if self.trimmed: return
self.trimmed = True
keep_words = []
for k, v in self.word2count.items():
if v >= min_count:
keep_words.append(k)
print('keep_words %s / %s = %.4f' % (
len(keep_words), len(self.word2index), len(keep_words) / len(self.word2index)
))
# Reinitialize dictionaries
self.word2index = {}
self.word2count = {}
self.index2word = {0: "PAD", 1: "SOS", 2: "EOS"}
self.n_words = 3 # Count default tokens
for word in keep_words:
self.index_word(word)
def unicode_to_ascii(s):
return ''.join(
c for c in unicodedata.normalize('NFD', s)
if unicodedata.category(c) != 'Mn'
)
def normalize_string(s):
s = unicode_to_ascii(s.lower().strip())
return s
def read_data(lang1, lang2, task_name):
print("Reading dataset from task {}...".format(task_name))
lines_train = open('./data/tasks_train_{}.txt'.format(task_name), encoding='utf-8'). \
read().strip().split('\n')
lines_test = open('./data/tasks_test_{}.txt'.format(task_name), encoding='utf-8'). \
read().strip().split('\n')
pairs_train = [[normalize_string(s) for s in l.lstrip('IN: ').split(' OUT: ')] for l in lines_train]
pairs_test = [[normalize_string(s) for s in l.lstrip('IN: ').split(' OUT: ')] for l in lines_test]
_input_lang = Lang(lang1)
_output_lang = Lang(lang2)
return _input_lang, _output_lang, pairs_train, pairs_test
def prepare_dataset(lang1, lang2, task_name):
global input_lang
global output_lang
input_lang, output_lang, pairs_train, pairs_test = read_data(lang1, lang2, task_name)
for pair in pairs_train:
input_lang.index_words(pair[0])
output_lang.index_words(pair[1])
if task_name == "addjump":
# remove duplicated JUMP command
pairs_train = list(set([tuple(item) for item in pairs_train]))
pairs_train = [list(item) for item in pairs_train]
return input_lang, output_lang, pairs_train, pairs_test
def get_bound_idx(pairs, length):
index = 0
for i, pair in enumerate(pairs):
if len(pair[0].split()) <= length:
index = i
else:
return index + 1
def random_batch(pair):
input_seqs = []
target_seqs = []
input_seqs.append(indexes_from_sentence(input_lang, pair[0], 'input'))
target_seqs.append(indexes_from_sentence(output_lang, pair[1], 'output'))
# Zip into pairs, sort by length (descending), unzip
seq_pairs = sorted(zip(input_seqs, target_seqs), key=lambda p: len(p[0]), reverse=True)
input_seqs, target_seqs = zip(*seq_pairs)
# For input and target sequences, get array of lengths and pad with 0s to max length
input_lengths = [len(s) for s in input_seqs]
input_padded = [pad_seq(s, max(input_lengths)) for s in input_seqs]
target_lengths = [len(s) for s in target_seqs]
target_padded = [pad_seq(s, max(target_lengths)) for s in target_seqs]
input_mask = torch.zeros((len(input_lengths), max(input_lengths)), dtype=torch.float32)
for idx, length in enumerate(input_lengths):
input_mask[idx, :length] = 1
target_mask = torch.zeros((len(target_lengths), max(target_lengths)), dtype=torch.float32)
for idx, length in enumerate(target_lengths):
target_mask[idx, :length] = 1
input_var = torch.LongTensor(input_padded)
target_var = torch.LongTensor(target_padded)
if USE_CUDA:
input_var = input_var.cuda()
target_var = target_var.cuda()
return input_var, input_lengths, input_mask, target_var, target_lengths
def indexes_from_sentence(lang, sentence, type):
if type == 'input':
return [lang.word2index[word] for word in sentence.split(' ')]
if type == 'output':
return [lang.word2index[word] for word in sentence.split(' ')] + [EOS_token]
def pad_seq(seq, max_length):
seq += [PAD_token for i in range(max_length - len(seq))]
return seq
def make_path_preparations(args, run_mode):
seed = args.random_seed
torch.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
if run_mode == 'train':
log_dir = os.path.split(args.logs_path)[0]
if not os.path.exists(log_dir):
os.makedirs(log_dir)
_logger = get_logger(f"{args.logs_path}.log")
print(f"{args.logs_path}.log")
_logger.info(f"random seed: {seed}")
if not os.path.exists(args.model_dir):
os.makedirs(args.model_dir)
_logger.info(f"checkpoint's dir is: {args.model_dir}")
_visualizer = VisualizeLogger(summary_dir=args.model_dir)
else:
_logger = None
_visualizer = None
return _logger, _visualizer
def prepare_optimisers(args, logger, policy_parameters, environment_parameters):
if args.env_optimizer == "adam":
env_opt_class = torch.optim.Adam
elif args.env_optimizer == "amsgrad":
env_opt_class = partial(torch.optim.Adam, amsgrad=True)
elif args.env_optimizer == "adadelta":
env_opt_class = torch.optim.Adadelta
else:
env_opt_class = torch.optim.SGD
if args.pol_optimizer == "adam":
pol_opt_class = torch.optim.Adam
elif args.pol_optimizer == "amsgrad":
pol_opt_class = partial(torch.optim.Adam, amsgrad=True)
elif args.pol_optimizer == "adadelta":
pol_opt_class = torch.optim.Adadelta
else:
pol_opt_class = torch.optim.SGD
optimizer = {"policy": pol_opt_class(params=policy_parameters, lr=args.pol_lr, weight_decay=args.l2_weight),
"env": env_opt_class(params=environment_parameters, lr=args.env_lr, weight_decay=args.l2_weight)}
return optimizer
def perform_env_optimizer_step(optimizer, model, args):
if args.clip_grad_norm > 0:
nn.utils.clip_grad_norm_(parameters=model.get_environment_parameters(),
max_norm=args.clip_grad_norm,
norm_type=float("inf"))
optimizer["env"].step()
optimizer["env"].zero_grad()
def perform_policy_optimizer_step(optimizer, model, args):
if args.clip_grad_norm > 0:
nn.utils.clip_grad_norm_(parameters=model.get_policy_parameters(),
max_norm=args.clip_grad_norm,
norm_type=float("inf"))
optimizer["policy"].step()
optimizer["policy"].zero_grad()
def visualize_tree(seq, tree_actions_batch, sr_actions_batch, swr_actions_batch):
seq_list = seq.split()
assert len(seq_list) == len(swr_actions_batch)
for idx, swr_action in enumerate(swr_actions_batch):
if swr_action[0, 0] == 1:
seq_list[idx] = "[" + seq_list[idx] + "]"
for tree_action_batch, sr_action_batch in zip(tree_actions_batch, sr_actions_batch):
if tree_action_batch is None:
break
tree_action = tree_action_batch[0]
sr_action = sr_action_batch[0]
merge_idx = tree_action.tolist().index(1)
sr_idx = sr_action.tolist().index(1)
if sr_idx == 1:
seq_list = seq_list[:merge_idx] + ['(' + ' '.join(seq_list[merge_idx:merge_idx + 2]) + ')'] + seq_list[
merge_idx + 2:]
else:
seq_list = seq_list[:merge_idx] + ['[' + ' '.join(seq_list[merge_idx:merge_idx + 2]) + ']'] + seq_list[
merge_idx + 2:]
return seq_list[0]
def evaluate(test_data, model, device):
loading_time_meter = AverageMeter()
ce_loss_meter = AverageMeter()
accuracy_meter = AverageMeter()
n_entropy_meter = AverageMeter()
model.eval()
start = time.time()
debug_info = {}
with torch.no_grad():
progress_bar = tqdm(range(len(test_data)))
for idx in progress_bar:
test_data_example = test_data[idx]
tokens, tokens_length, mask, labels, labels_length = random_batch(test_data_example)
tokens = tokens.to(device=device)
mask = mask.to(device=device)
loading_time_meter.update(time.time() - start)
pred_labels, tree_sr_log_prob, tree_sr_rewards, decoder_log_probs, decode_rewards, tree_actions, sr_actions, swr_actions, normalized_entropy = \
model(test_data_example, tokens, mask, debug_info=debug_info)
normalized_entropy = normalized_entropy.mean()
accuracy = [1. if (pred_labels == test_data_example[1]) else 0.]
accuracy = torch.tensor(accuracy).mean()
ce_loss = accuracy
n = mask.shape[0]
accuracy_meter.update(accuracy.item(), n)
ce_loss_meter.update(ce_loss.item(), n)
n_entropy_meter.update(normalized_entropy.item(), n)
progress_bar.set_description("Test Acc {:.1f}%".format(accuracy_meter.avg * 100))
return accuracy_meter.avg
def validate(valid_data, model, epoch, device, logger):
loading_time_meter = AverageMeter()
batch_time_meter = AverageMeter()
ce_loss_meter = AverageMeter()
accuracy_meter = AverageMeter()
n_entropy_meter = AverageMeter()
if len(valid_data) > 1000:
# to accelerate
valid_data = [random.choice(valid_data) for _ in range(1000)]
visualizer.update_validate_size(len(valid_data))
model.eval()
start = time.time()
debug_info = {}
with torch.no_grad():
for idx, valid_data_example in enumerate(valid_data):
tokens, tokens_length, mask, labels, labels_length = random_batch(valid_data_example)
tokens = tokens.to(device=device)
mask = mask.to(device=device)
loading_time_meter.update(time.time() - start)
pred_labels, tree_sr_log_prob, tree_sr_rewards, decoder_log_probs, decode_rewards, tree_actions, sr_actions, swr_actions, normalized_entropy = \
model(valid_data_example, tokens, mask, debug_info=debug_info)
"""
logging into visualizer
"""
debug_info['tree_sr_rewards'] = tree_sr_rewards
debug_info['decode_rewards'] = decode_rewards
seq = " ".join([input_lang.index2word[token.data.item()] for token in tokens[0]])
tree = visualize_tree(seq, tree_actions, sr_actions, swr_actions)
visualizer.log_text(valid_data_example[1], tree, pred_labels, seq, debug_info)
visualizer.update_step()
normalized_entropy = normalized_entropy.mean()
accuracy = [1. if (pred_labels == valid_data_example[1]) else 0.]
accuracy = torch.tensor(accuracy).mean()
ce_loss = accuracy
n = mask.shape[0]
accuracy_meter.update(accuracy.item(), n)
ce_loss_meter.update(ce_loss.item(), n)
n_entropy_meter.update(normalized_entropy.item(), n)
batch_time_meter.update(time.time() - start)
start = time.time()
visualizer.log_performance(accuracy_meter.avg)
visualizer.update_epoch()
logger.info(f"Valid: epoch: {epoch} ce_loss: {ce_loss_meter.avg:.4f} accuracy: {accuracy_meter.avg:.4f} "
f"n_entropy: {n_entropy_meter.avg:.4f} "
f"loading_time: {loading_time_meter.avg:.4f} batch_time: {batch_time_meter.avg:.4f}")
model.train()
return accuracy_meter.avg
def train(train_data, valid_data, model, optimizer, epoch, args, logger,
total_batch_num, data_len, regular_weight):
loading_time_meter = AverageMeter()
batch_time_meter = AverageMeter()
ce_loss_meter = AverageMeter()
accuracy_meter = AverageMeter()
n_entropy_meter = AverageMeter()
prob_ratio_meter = AverageMeter()
reward_std_meter = AverageMeter()
device = args.gpu_id
model.train()
start = time.time()
# simple data augmentation for lasting longer epochs for MiniSCAN
if len(train_data) < 100:
train_data = [pair for pair in train_data for _ in range(8)]
elif len(train_data) < 500:
train_data = [pair for pair in train_data for _ in range(2)]
random.shuffle(train_data)
batch_size = args.accumulate_batch_size
if len(train_data) % batch_size == 0:
batch_num = len(train_data) // batch_size
else:
batch_num = len(train_data) // batch_size + 1
val_accuracy = 0.
for batch_idx in range(batch_num):
if (batch_idx + 1) * batch_size < len(train_data):
train_pairs = train_data[batch_idx * batch_size:(batch_idx + 1) * batch_size]
else:
train_pairs = train_data[batch_idx * batch_size:]
batch_size = len(train_pairs)
total_batch_num += batch_size
loading_time_meter.update(time.time() - start)
normalized_entropy_samples = []
ts_log_prob_samples = []
decode_log_prob_samples = []
ts_rewards_samples = []
decode_rewards_samples = []
rewards_all = []
root_rewards_all = []
accuracy_samples = []
sample_num = 10
for example_idx in range(batch_size):
for sample_idx in range(sample_num):
train_pair = train_pairs[example_idx]
tokens, tokens_length, mask, labels, labels_length = random_batch(train_pair)
tokens = tokens.to(device=device)
mask = mask.to(device=device)
pred_labels, tree_sr_log_prob, tree_sr_rewards, decoder_log_probs, decode_rewards, tree_actions, sr_actions, swr_actions, normalized_entropy = \
model(train_pair, tokens, mask, is_test=False, epoch=epoch)
accuracy = 1. if (pred_labels == train_pair[1]) else 0.
normalized_entropy_samples.append(normalized_entropy)
ts_log_prob_samples.append(tree_sr_log_prob)
ts_rewards_samples.append(tree_sr_rewards)
decode_log_prob_samples.append(decoder_log_probs)
decode_rewards_samples.append(decode_rewards)
rewards_all = rewards_all + decode_rewards
accuracy_samples.append(accuracy)
root_rewards_all.append(decode_rewards[-1])
normalized_entropy_samples = torch.cat(normalized_entropy_samples, dim=0)
accuracy_samples = torch.tensor(accuracy_samples).cuda()
rewards_all = torch.tensor(rewards_all).cuda()
baseline = rewards_all.mean()
accuracy = accuracy_samples.mean()
loss_all = []
for idy, ts_rewards in enumerate(ts_rewards_samples):
ts_actions_log_prob = torch.cat(ts_log_prob_samples[idy], dim=0)
ts_rewards = torch.tensor(ts_rewards).cuda()
if baseline:
ts_rewards = ts_rewards - baseline
ts_prob_ratio = (ts_actions_log_prob - ts_actions_log_prob.detach()).exp()
ts_loss = (ts_prob_ratio * ts_rewards).mean().unsqueeze(0)
decode_rewards = decode_rewards_samples[idy]
decode_actions_log_prob = torch.cat(decode_log_prob_samples[idy], dim=0)
decode_rewards = torch.tensor(decode_rewards).cuda()
if baseline:
decode_rewards = decode_rewards - baseline
decode_prob_ratio = (decode_actions_log_prob - decode_actions_log_prob.detach()).exp()
decode_loss = (decode_prob_ratio * decode_rewards).mean().unsqueeze(0)
loss_all.append(ts_loss + decode_loss)
loss_avg = torch.cat(loss_all, dim=0).mean()
loss = loss_avg - regular_weight * normalized_entropy_samples.mean()
loss.backward()
perform_policy_optimizer_step(optimizer, model, args)
perform_env_optimizer_step(optimizer, model, args)
normalized_entropy = normalized_entropy.mean()
n = mask.shape[0]
ce_loss = rewards_all.mean()
accuracy_meter.update(accuracy.item(), n)
ce_loss_meter.update(ce_loss.item(), n)
reward_std_meter.update(rewards_all.std().item(), n)
n_entropy_meter.update(normalized_entropy.item(), n)
prob_ratio_meter.update((1.0 - loss_avg.detach()).abs().mean().item(), n)
batch_time_meter.update(time.time() - start)
global global_step
global_step += 1
if batch_num <= 500:
val_num = batch_num
else:
val_num = 250
if (batch_idx + 1) % (val_num) == 0:
logger.info(f"Train: epoch: {epoch} batch_idx: {batch_idx + 1} ce_loss: {ce_loss_meter.avg:.4f} "
f"reward_std: {reward_std_meter.avg:.4f} "
f"n_entropy: {n_entropy_meter.avg:.4f} loading_time: {loading_time_meter.avg:.4f} "
f"batch_time: {batch_time_meter.avg:.4f}")
logger.info(f"total_batch_num: {total_batch_num} cir: {data_len}")
val_accuracy = validate(valid_data, model, epoch, device, logger)
global best_model_path
logger.info("saving model...")
best_model_path = f"{args.model_dir}/{epoch}-{batch_idx}.mdl"
torch.save({"epoch": epoch, "batch_idx": batch_idx, "state_dict": model.state_dict()}, best_model_path)
model.train()
start = time.time()
if val_accuracy >= 0.99:
break
return val_accuracy, total_batch_num
def train_model(args, task_name, logger):
global input_lang
global output_lang
input_lang, output_lang, pairs_train, _ = prepare_dataset('nl', 'action', task_name)
index = [i for i in range(len(pairs_train))]
random.shuffle(index)
train_size = int(0.8 * len(pairs_train))
dev_size = len(pairs_train) - train_size
train_idxs, dev_idxs = torch.utils.data.random_split(index, [train_size, dev_size])
train_pairs_all = [pairs_train[idx] for idx in train_idxs]
dev_pairs_all = [pairs_train[idx] for idx in dev_idxs]
for pair in dev_pairs_all:
if len(pair[0].split()) <= 4:
train_pairs_all.append(pair)
train_data, dev_data = train_pairs_all, dev_pairs_all
train_data.sort(key=lambda p: len(p[0].split()))
maximum_lesson = len(train_data[-1][0].split())
dev_data = list(set([tuple(item) for item in dev_data]))
dev_data.sort(key=lambda p: len(p[0].split()))
dev_data = [list(item) for item in dev_data]
print(random.choice(train_pairs_all))
print(random.choice(dev_pairs_all))
args.vocab_size = input_lang.n_words
args.label_size = output_lang.n_words
model = HRLModel(x_ratio_rate=args.simplicity_ratio,
encode_mode=args.encode_mode,
decay_r=args.decay_r,
vocab_size=args.vocab_size,
word_dim=args.word_dim,
hidden_dim=args.hidden_dim,
label_dim=args.label_size,
composer_leaf=args.composer_leaf,
composer_trans_hidden=args.composer_trans_hidden,
input_lang=input_lang,
output_lang=output_lang).cuda(args.gpu_id)
optimizer = prepare_optimisers(args, logger,
policy_parameters=model.get_policy_parameters(),
environment_parameters=model.get_environment_parameters())
data_len = 3
epoch_count = 0
# default is 1 lesson
cir_epoch_dict = {
3: 30,
4: 30,
5: 20,
6: 10,
7: 5
}
regular_weight = args.init_regular_weight
print('Start lesson ', data_len)
total_batch_num = 0
for epoch in range(args.max_epoch):
if data_len in cir_epoch_dict:
# training epochs
cir_epoch_num = cir_epoch_dict[data_len]
else:
cir_epoch_num = 1
train_lesson_idx = get_bound_idx(train_data, data_len)
dev_lesson_idx = get_bound_idx(dev_data, data_len)
val_accuracy, total_batch_num = train(train_data[:train_lesson_idx],
dev_data[:dev_lesson_idx], model, optimizer,
epoch, args, logger,
total_batch_num, data_len, regular_weight)
if data_len == maximum_lesson and val_accuracy >= 0.99:
print("Finish Training. Training Succeed :)")
break
epoch_count += 1
if epoch_count == cir_epoch_num or val_accuracy >= 0.99:
# validate on all dev data
if val_accuracy >= 0.99:
val_accuracy_all = validate(dev_data, model, epoch, args.gpu_id, logger)
if val_accuracy_all >= 0.99:
print("Early Stopped. Training Succeed :)")
break
if data_len < maximum_lesson:
print('Lesson ', data_len, 'completed at', epoch)
data_len += 1
regular_weight = max(args.regular_decay_rate * regular_weight, args.regular_weight)
epoch_count = 0
print('Start lesson:', data_len)
def evaluate_model(args, task_name, logger):
global input_lang
global output_lang
input_lang, output_lang, _, pairs_test = prepare_dataset('nl', 'action', task_name)
test_data = pairs_test
test_data.sort(key=lambda p: len(p[0].split()))
args.vocab_size = input_lang.n_words
args.label_size = output_lang.n_words
model = HRLModel(x_ratio_rate=args.simplicity_ratio,
encode_mode=args.encode_mode,
decay_r=args.decay_r,
vocab_size=args.vocab_size,
word_dim=args.word_dim,
hidden_dim=args.hidden_dim,
label_dim=args.label_size,
composer_leaf=args.composer_leaf,
composer_trans_hidden=args.composer_trans_hidden,
input_lang=input_lang,
output_lang=output_lang).cuda(args.gpu_id)
checkpoint_file = args.checkpoint
print("loading", checkpoint_file)
checkpoint = torch.load(checkpoint_file)
model.load_state_dict(checkpoint["state_dict"])
print("loading finished...")
print("Start testing ..")
test_acc = evaluate(test_data, model, args.gpu_id)
print("Test Acc: {} %".format(test_acc * 100))
def prepare_arguments(checkpoint_folder, parser):
composer_lr = 1.0
solver_lr = 0.1
accumulate_batch_size = 4
regular_weight = 1e-4
regular_decay_rate = 0.5
hidden_size = 128
encode_mode = 'seq'
args = {"word-dim": hidden_size,
"hidden-dim": hidden_size,
"composer_leaf": "no_transformation",
"composer-trans-hidden": hidden_size,
"regular-weight": regular_weight, # 0.0001
"clip-grad-norm": 0.5,
"env-optimizer": "adadelta", # adadelta
"pol-optimizer": "adadelta", # adadelta
"env-lr": composer_lr, # 1.
"pol-lr": solver_lr, # 0.1
"l2-weight": 0.0001,
# TODO: currently the batch size must be set as 1
# since our implementation requires it as to be.
# if you want to accumulate gradients, please use accumulate_batch_size
"batch-size": 1,
"accumulate-batch-size": accumulate_batch_size,
"max-epoch": 300,
"gpu-id": 0,
"model-dir": "checkpoint/models/" + checkpoint_folder,
"logs-path": "checkpoint/logs/" + checkpoint_folder,
"encode-mode": encode_mode,
"regular-decay-rate": regular_decay_rate}
parser.add_argument("--word-dim", required=False, default=args["word-dim"], type=int)
parser.add_argument("--hidden-dim", required=False, default=args["hidden-dim"], type=int)
parser.add_argument("--composer_leaf", required=False, default=args["composer_leaf"],
choices=["no_transformation", "lstm_transformation",
"bi_lstm_transformation", "conv_transformation"])
parser.add_argument("--composer-trans-hidden", required=False, default=args["composer-trans-hidden"], type=int)
parser.add_argument("--clip-grad-norm", default=args["clip-grad-norm"], type=float,
help="If the value is less or equal to zero clipping is not performed.")
parser.add_argument("--env-optimizer", required=False, default=args["env-optimizer"],
choices=["adam", "amsgrad", "sgd", "adadelta"])
parser.add_argument("--pol-optimizer", required=False, default=args["pol-optimizer"],
choices=["adam", "amsgrad", "sgd", "adadelta"])
parser.add_argument("--env-lr", required=False, default=args["env-lr"], type=float)
parser.add_argument("--pol-lr", required=False, default=args["pol-lr"], type=float)
parser.add_argument("--l2-weight", required=False, default=args["l2-weight"], type=float)
parser.add_argument("--batch-size", required=False, default=args["batch-size"], type=int)
parser.add_argument("--accumulate-batch-size", required=False, default=args["accumulate-batch-size"], type=int)
parser.add_argument("--max-epoch", required=False, default=args["max-epoch"], type=int)
parser.add_argument("--gpu-id", required=False, default=args["gpu-id"], type=int)
parser.add_argument("--model-dir", required=False, default=args["model-dir"], type=str)
parser.add_argument("--logs-path", required=False, default=args["logs-path"], type=str)
parser.add_argument("--encode-mode", required=False, default=args["encode-mode"], type=str)
parser.add_argument("--regular-weight", default=args["regular-weight"], type=float)
parser.add_argument("--regular-decay-rate", required=False, default=args["regular-decay-rate"], type=float)
parser.add_argument("--init-regular-weight", required=False, default=1e-1, type=float)
# default no reward decay
parser.add_argument("--decay-r", required=False, default=1.0, type=str)
return parser.parse_args()
if __name__ == "__main__":
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument("--mode", required=True, default='train',
choices=['train', 'test'], type=str,
help="Determine whether to train a model or test using a trained weight file")
arg_parser.add_argument("--checkpoint", required=True, type=str,
help="When training, it is the folder to store model weights; "
"Otherwise it is the weight path to be loaded.")
arg_parser.add_argument("--task", required=True, type=str,
choices=["addjump", "around_right", "simple", "length",
"extend", "mcd1", "mcd2", "mcd3"],
help="All tasks on SCAN, the task name is used to load train or test file")
arg_parser.add_argument("--random-seed", required=False, default=1, type=int)
arg_parser.add_argument("--simplicity-ratio", required=False, default=0.0, type=float)
parsed_args = arg_parser.parse_args()
if parsed_args.mode == 'train':
args = prepare_arguments(parsed_args.checkpoint, arg_parser)
logger, visualizer = make_path_preparations(args, parsed_args.mode)
train_model(args, parsed_args.task, logger)
else:
args = prepare_arguments(parsed_args.checkpoint, arg_parser)
logger, visualizer = make_path_preparations(args, parsed_args.mode)
evaluate_model(args, parsed_args.task, logger)