-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathstep2_serialization.py
174 lines (145 loc) · 6.91 KB
/
step2_serialization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import os
import json
import argparse
import subprocess
from tqdm import tqdm
from step1_schema_linking import read_database_schema
from train import run_command
def running_process(generate_path):
# cmd = f"python -m multiprocessing_bpe_encoder \
# --encoder-json ./models/spider_sl/encoder.json \
# --vocab-bpe ./models/spider_sl/vocab.bpe \
# --inputs {generate_path}/train.src \
# --outputs {generate_path}/train.bpe.src \
# --workers 1 \
# --keep-empty"
# run_command(cmd)
#
# cmd = f"python -m multiprocessing_bpe_encoder \
# --encoder-json ./models/spider_sl/encoder.json \
# --vocab-bpe ./models/spider_sl/vocab.bpe \
# --inputs {generate_path}/train.tgt \
# --outputs {generate_path}/train.bpe.tgt \
# --workers 1 \
# --keep-empty"
# run_command(cmd)
cmd = f"python -m multiprocessing_bpe_encoder \
--encoder-json ./models/spider_sl/encoder.json \
--vocab-bpe ./models/spider_sl/vocab.bpe \
--inputs {generate_path}/dev.src \
--outputs {generate_path}/dev.bpe.src \
--workers 1 \
--keep-empty"
run_command(cmd)
cmd = f"python -m multiprocessing_bpe_encoder \
--encoder-json ./models/spider_sl/encoder.json \
--vocab-bpe ./models/spider_sl/vocab.bpe \
--inputs {generate_path}/dev.tgt \
--outputs {generate_path}/dev.bpe.tgt \
--workers 1 \
--keep-empty"
run_command(cmd)
# cmd = f'fairseq-preprocess --source-lang "src" --target-lang "tgt" \
# --trainpref {generate_path}/train.bpe \
# --validpref {generate_path}/dev.bpe \
# --destdir {generate_path}/bin \
# --workers 2 \
# --srcdict ./models/spider_sl/dict.src.txt \
# --tgtdict ./models/spider_sl/dict.tgt.txt '
cmd = f'fairseq-preprocess --source-lang "src" --target-lang "tgt" \
--validpref {generate_path}/dev.bpe \
--destdir {generate_path}/bin \
--workers 2 \
--srcdict ./models/spider_sl/dict.src.txt \
--tgtdict ./models/spider_sl/dict.tgt.txt '
subprocess.Popen(
cmd, universal_newlines=True, shell=True,
stdout=subprocess.PIPE, stderr=subprocess.PIPE).communicate()
def build_schema_linking_data(schema, question, item, turn_id, linking_type):
source_sequence_list, target_sequence_list = [], []
# column description
column_names = []
for i, (t, c) in enumerate(zip(schema['column_types'], schema['column_names_original'])):
if c[0] == -1:
column_names.append("{0} {1}".format(t, c[1].lower()))
else:
column_with_alias = "{0}@{1}".format(schema['table_names_original'][c[0]].lower(), c[1].lower())
tag_list = []
if column_with_alias in item['interaction'][turn_id]['exact_match']:
tag_list.append('EM')
elif column_with_alias in item['interaction'][turn_id]['partial_match']:
tag_list.append('PA')
if column_with_alias in item['interaction'][turn_id]['value_match']:
tag_list.append('VC')
# primary-foreign key
if i in schema['primary_keys']:
tag_list.append('RK')
elif i in schema['foreign_keys_col']:
tag_list.append('FO')
if tag_list != []:
column_names.append("{0} {1} {2}".format(' '.join(tag_list), t, column_with_alias))
else:
column_names.append("{0} {1}".format(t, column_with_alias))
# table description
table_names = []
for t in schema['table_names_original']:
tag_list = []
if t in item['interaction'][turn_id]['exact_match']:
tag_list.append('EM')
elif t in item['interaction'][turn_id]['partial_match']:
tag_list.append('PA')
if '_nosl' in linking_type or 'not' in linking_type:
tag_list = []
if tag_list != []:
table_names.append("{0} {1}".format(' '.join(tag_list), t.lower()))
else:
table_names.append("{0}".format(t.lower()))
table_names = ' | '.join(table_names)
column_names = ' | '.join(column_names)
for structure_schema_list in schema['permutations'][:10]:
structure_schema_str = ' | '.join(structure_schema_list)
source_sequence = f"<C> {column_names} | <T> {table_names} | <S> {structure_schema_str} | <Q> {question.lower()}"
target_sequence = item['interaction'][turn_id]['sql'].lower()
source_sequence_list.append(source_sequence)
target_sequence_list.append(target_sequence)
return source_sequence_list, target_sequence_list
def extract_input_and_output(example_lines, linking_type):
inputs = []
outputs = []
database_schema_filename = './data/spider/tables.json'
schema_tokens, column_names, database_schemas = read_database_schema(database_schema_filename)
for item in tqdm(example_lines):
question = item['interaction'][0]['utterance']
schema = database_schemas[item['database_id']]
source_sequence, target_sequence = build_schema_linking_data(schema=schema,
question=question,
item=item,
turn_id=0,
linking_type=linking_type)
outputs.extend(target_sequence)
inputs.extend(source_sequence)
assert len(inputs) == len(outputs)
return inputs, outputs
def read_dataflow_dataset(file_path, out_folder, session, linking_type):
train_out_path = os.path.join(out_folder, session)
train_src_writer = open(train_out_path + ".src", "w", encoding="utf8")
train_tgt_writer = open(train_out_path + ".tgt", "w", encoding="utf8")
with open(file_path, "r", encoding='utf-8') as data_file:
lines = json.load(data_file)
data_input, data_output = extract_input_and_output(lines, linking_type)
train_src_writer.write("\n".join(data_input))
train_tgt_writer.write("\n".join(data_output))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--sl_dataset_path", default='./data/spider_schema_linking_tag')
parser.add_argument("--output_path", default='./dataset_post/spider_sl')
parser.add_argument("--linking_type", default='default')
args = parser.parse_args()
# for session in ["train", "dev"]:
for session in ["dev"]:
file_path = os.path.join(args.sl_dataset_path, "{}.json".format(session))
out_folder = args.output_path
if not os.path.exists(out_folder):
os.makedirs(out_folder)
read_dataflow_dataset(file_path, out_folder, session, args.linking_type)
running_process(args.output_path)