-
Notifications
You must be signed in to change notification settings - Fork 744
/
Copy pathdata_utils.py
269 lines (215 loc) · 9.36 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# ------------------------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
# ------------------------------------------------------------------------------------------
import os, sys
import glob
import random
from collections import Counter, OrderedDict
import numpy as np
import torch
import json
import torch
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
class LMOrderedIterator(object):
def __init__(self, data, bsz, bptt, eval_len=None, device='cpu', world_size=1, rank=0):
"""
data -- LongTensor -- the LongTensor is strictly ordered
"""
self.data = data
self.bsz = bsz
self.world_size = world_size
self.rank = rank
self.bptt = bptt # tgt_len
# existing len.
self.eval_len = bptt if eval_len is None else eval_len
self.device = device
self.global_bsz = bsz * world_size
# Work out how cleanly we can divide the dataset into bsz parts.
self.n_step = len(data) // self.global_bsz # bsz
self.split_data = torch.tensor(
data[rank * self.n_step * bsz : (rank + 1) * self.n_step * bsz],
dtype=torch.long, device=self.device
) # data.view(-1)
self.split_data = self.split_data.view(bsz, -1)
def __iter__(self):
return self.get_fixlen_iter()
def get_batch(self, i, bptt, eval_len):
beg_idx = i
end_idx = i + bptt # seq_len
# batch_size, lengh;
_input = self.split_data[:, beg_idx : end_idx].contiguous()
_target = self.split_data[:, beg_idx+1 : end_idx+1].contiguous()
_msk = torch.cat(
[
torch.zeros(bptt-eval_len, dtype=torch.float, device=self.device),
torch.ones(eval_len, dtype=torch.float, device=self.device)
]
)
_msk = _msk.unsqueeze(0).expand_as(_input) # .unsqueeze(-1) # length, 1;
return _input, _target, _msk
def get_fixlen_iter(self, start=0):
self.data_len = self.split_data.size(1)
_eval_cursor = 0
for i in range(start, self.data_len - 1, self.eval_len):
bptt = min(self.bptt, self.data_len - i - 1)
_end_idx = i + bptt
yield self.get_batch(i, bptt, _end_idx - _eval_cursor)
_eval_cursor = _end_idx
class Corpus(object):
def __init__(self, path):
self.path = path
self.num_words = 0
self.tokens = []
with open(self.path, "r") as reader:
for line in reader:
items = json.loads(line.strip())
book = items['book']
tokens = items['tokens']
num_words = items['num_words']
self.num_words += num_words
self.tokens.extend(tokens)
class BinLMOrderedIterator(object):
def __init__(self, corpus, bsz, bptt, eval_len=None, device='cpu', world_size=1, rank=0):
"""
data -- LongTensor -- the LongTensor is strictly ordered
"""
self.corpus = corpus
self.bsz = bsz
self.world_size = world_size
self.rank = rank
self.bptt = bptt # tgt_len
# existing len.
self.eval_len = bptt if eval_len is None else eval_len
self.device = device
self.global_bsz = bsz * world_size
# Work out how cleanly we can divide the dataset into bsz parts.
self.n_step = corpus.length // self.global_bsz # bsz
self.offset = [(rank * bsz + _b) * self.n_step for _b in range(bsz)]
def __iter__(self):
return self.get_fixlen_iter()
def get_batch(self, i, bptt, eval_len):
# batch_size, lengh;
_inputs = []
_targets = []
for _b in range(0, self.bsz):
_input = self.corpus.get_tokens(self.offset[_b] + i, bptt)
_target = self.corpus.get_tokens(self.offset[_b] + i + 1, bptt)
_inputs.append(_input)
_targets.append(_target)
_input = torch.tensor(_inputs, dtype=torch.int64, device=self.device).contiguous()
_target = torch.tensor(_targets, dtype=torch.int64, device=self.device).contiguous()
_msk = torch.cat(
[
torch.zeros(bptt-eval_len, dtype=torch.float, device=self.device),
torch.ones(eval_len, dtype=torch.float, device=self.device)
]
)
_msk = _msk.unsqueeze(0).expand_as(_input) # .unsqueeze(-1) # length, 1;
return _input, _target, _msk
def get_fixlen_iter(self, start=0):
#self.data_len = self.split_data.size(1)
_eval_cursor = 0
for i in range(start, self.n_step - 1, self.eval_len):
bptt = min(self.bptt, self.n_step - i - 1)
_end_idx = i + bptt
yield self.get_batch(i, bptt, _end_idx - _eval_cursor)
_eval_cursor = _end_idx
class BinCorpus(object):
def __init__(self, path):
self.path = path
self.book_token_span = []
self.book_token_span.append(0)
tokens_sum = 0
self.num_words = 0
with open(path+'.info', 'r') as info_reader:
for line in info_reader:
items = json.loads(line.strip())
book = items['book']
num_tokens = items['num_subtokens']
num_words = items['num_words']
tokens_sum += num_tokens
self.book_token_span.append(tokens_sum)
self.num_words += num_words
self.length = self.book_token_span[-1]
self.bin_reader = open(path+'.bin', 'rb')
def get_tokens(self, offset, count):
INT64_SIZE = 8
self.bin_reader.seek(offset * INT64_SIZE)
x = np.fromfile(self.bin_reader, count=count, dtype=np.int)
return x
def get_lm_corpus(data):
print('Producing dataset {}...'.format(data))
corpus = Corpus(data)
return corpus
def padding_tokens(tokens, max_seq_length, pad_token, direct, max_context_length=0):
if max_context_length == 0:
max_context_length = max_seq_length
if len(tokens) > max_context_length:
if direct > 0:
pad_tokens = tokens[:max_context_length]
else:
pad_tokens = tokens[-max_context_length:]
else:
pad_tokens = tokens
token_len = len(pad_tokens)
pad_tokens = pad_tokens + [pad_token for _ in range(max_seq_length - token_len)]
return pad_tokens, token_len
class FT_Dataset(Dataset):
def __init__(self, ft_file, batch_size, max_seq_length,
max_eval_length=0, joint_lm=False, prefix_len=0, infix_len=0,
prefix_cursor=1000000, infix_cursor=2000000):
self.ft_file = ft_file
self.ft_samples = self.read_ft_file(ft_file)
self.batch_size = batch_size
self.num_examples = len(self.ft_samples)
self.max_seq_length = max_seq_length
self.max_eval_length = max_eval_length
self.rng = random.Random(911)
self.joint_lm = joint_lm
self.num_batches = int((self.num_examples + self.batch_size - 1) / self.batch_size)
self.prefix_len = prefix_len
self.infix_len = infix_len
self.prefix_cursor = prefix_cursor
self.infix_cursor = infix_cursor
def __len__(self):
return self.num_batches * self.batch_size
def __getitem__(self, item):
if(item >= self.num_examples):
item = self.rng.randint(0, self.num_examples - 1)
example = self.ft_samples[item]
context = example[0]
completion = example[1]
pretokens = [i + self.prefix_cursor for i in range(0, self.prefix_len)]
intokens = [i + self.infix_cursor for i in range(0, self.infix_len)]
conditions = pretokens + context + intokens
_input, _input_len = padding_tokens(conditions + completion, self.max_seq_length, 0, 1)
pad_targets = [0 for i in range(0, self.prefix_len)] + context + [0 for i in range(0, self.infix_len)] + completion
_target, _ = padding_tokens(pad_targets[1:], self.max_seq_length, 0, 1)
if not self.joint_lm:
_msk = [0.0] * (len(conditions) - 1) + [1.0] * (_input_len - len(conditions))
else:
_msk = [1.0] * (_input_len - 1)
_msk, _ = padding_tokens(_msk, self.max_seq_length, 0.0, 1)
output = {}
output["id"] = torch.tensor(item, dtype=torch.long)
_query, _query_len = padding_tokens(
conditions, self.max_seq_length, 0, -1,
max_context_length = self.max_seq_length - self.max_eval_length
)
output["query"] = torch.tensor(_query, dtype=torch.long)
output["query_len"] = torch.tensor(_query_len, dtype=torch.long)
output["input"] = torch.tensor(_input, dtype=torch.long)
output["target"] = torch.tensor(_target, dtype=torch.long)
output["mask"] = torch.tensor(_msk, dtype=torch.float)
return output
def read_ft_file(self, ft_file):
ft_samples = []
with open(ft_file, 'r') as reader:
for line in reader:
items = json.loads(line.strip())
context = items['context']
completion = items['completion']
ft_samples.append([context, completion])
return ft_samples