-
Notifications
You must be signed in to change notification settings - Fork 744
/
Copy pathgpu.py
126 lines (106 loc) · 4.59 KB
/
gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# ------------------------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
# ------------------------------------------------------------------------------------------
import argparse
import time
import math
import os, sys
import itertools
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.distributed as dist
def add_gpu_params(parser: argparse.ArgumentParser):
parser.add_argument("--platform", default='k8s', type=str, help='platform cloud')
parser.add_argument("--local_rank", default=0, type=int, help='local rank')
parser.add_argument("--rank", default=0, type=int, help='rank')
parser.add_argument("--device", default=0, type=int, help='device')
parser.add_argument("--world_size", default=0, type=int, help='world size')
parser.add_argument("--random_seed", default=10, type=int, help='random seed')
def distributed_opt(args, model, opt, grad_acc=1):
if args.platform == 'azure':
args.hvd.broadcast_parameters(model.state_dict(), root_rank=0)
opt = args.hvd.DistributedOptimizer(
opt, named_parameters=model.named_parameters(), backward_passes_per_step=grad_acc
)
elif args.platform == 'philly' or args.platform == 'k8s' or args.platform == 'local':
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.local_rank], output_device=args.local_rank,
find_unused_parameters=False, broadcast_buffers=False
)
return model, opt
def distributed_gather(args, tensor):
g_y = [torch.zeros_like(tensor) for _ in range(args.world_size)]
torch.distributed.all_gather(g_y, tensor, async_op=False)
return torch.stack(g_y)
def distributed_sync(args):
if args.platform == 'azure':
args.hvd.allreduce(torch.tensor(0), name='barrier')
else:
args.dist.barrier()
def parse_gpu(args):
torch.manual_seed(args.random_seed)
if args.platform == 'local':
dist.init_process_group(backend='nccl')
local_rank = torch.distributed.get_rank()
torch.cuda.set_device(local_rank)
device = torch.device('cuda', local_rank)
args.rank = local_rank
args.device = device
args.world_size = torch.distributed.get_world_size()
args.dist = dist
elif args.platform == 'azure':
import horovod.torch as hvd
hvd.init()
print('azure hvd rank', hvd.rank(), 'local rank', hvd.local_rank())
local_rank = hvd.local_rank()
torch.cuda.set_device(local_rank)
device = torch.device('cuda', local_rank)
rank = hvd.rank()
world_size = hvd.size()
args.local_rank = local_rank
args.rank = rank
args.device = device
args.world_size = world_size
args.hvd = hvd
elif args.platform == 'philly':
local_rank = args.local_rank
torch.cuda.set_device(local_rank)
dist.init_process_group(backend='nccl')
rank = dist.get_rank()
world_size = torch.distributed.get_world_size()
device = torch.device('cuda', local_rank)
args.rank = rank
args.device = device
args.world_size = world_size
args.dist = dist
elif args.platform == 'k8s':
master_uri = f"tcp://{os.environ['MASTER_ADDR']}:{os.environ['MASTER_PORT']}"
local_rank = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
args.local_rank = local_rank
world_size = int(os.environ['OMPI_COMM_WORLD_SIZE'])
world_rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
rank = world_rank
torch.cuda.set_device(local_rank)
dist.init_process_group(
backend='nccl',
init_method=master_uri,
world_size=world_size,
rank=world_rank,
)
device = torch.device("cuda", local_rank)
args.rank = rank
args.device = device
args.world_size = world_size
args.dist = dist
print(
'myrank:', args.rank,
'local_rank:', args.local_rank,
'device_count:', torch.cuda.device_count(),
'world_size:', args.world_size
)
def cleanup(args):
if args.platform == 'k8s' or args.platform == 'philly':
args.dist.destroy_process_group()