|
| 1 | +'''Train CIFAR10 with PyTorch.''' |
| 2 | +from __future__ import print_function |
| 3 | + |
| 4 | +import sys |
| 5 | +import torch |
| 6 | +import torch.nn as nn |
| 7 | +import torch.optim as optim |
| 8 | +import torch.nn.functional as F |
| 9 | +import torch.backends.cudnn as cudnn |
| 10 | + |
| 11 | +import torchvision |
| 12 | +import torchvision.transforms as transforms |
| 13 | + |
| 14 | +import os |
| 15 | +import argparse |
| 16 | +import time |
| 17 | + |
| 18 | +import models |
| 19 | +import datasets |
| 20 | +import math |
| 21 | + |
| 22 | +from lib.LinearAverage import LinearAverage |
| 23 | +from lib.NCA import NCACrossEntropy |
| 24 | +from lib.utils import AverageMeter |
| 25 | +from test import NN, kNN |
| 26 | + |
| 27 | +parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training') |
| 28 | +parser.add_argument('--lr', default=0.1, type=float, help='learning rate') |
| 29 | +parser.add_argument('--resume', '-r', default='', type=str, help='resume from checkpoint') |
| 30 | +parser.add_argument('--test-only', action='store_true', help='test only') |
| 31 | +parser.add_argument('--low-dim', default=128, type=int, |
| 32 | + metavar='D', help='feature dimension') |
| 33 | +parser.add_argument('--temperature', default=0.05, type=float, |
| 34 | + metavar='T', help='temperature parameter for softmax') |
| 35 | +parser.add_argument('--memory-momentum', default=0.5, type=float, |
| 36 | + metavar='M', help='momentum for non-parametric updates') |
| 37 | + |
| 38 | +args = parser.parse_args() |
| 39 | + |
| 40 | +use_cuda = torch.cuda.is_available() |
| 41 | +best_acc = 0 # best test accuracy |
| 42 | +start_epoch = 0 # start from epoch 0 or last checkpoint epoch |
| 43 | + |
| 44 | +# Data |
| 45 | +print('==> Preparing data..') |
| 46 | +transform_train = transforms.Compose([ |
| 47 | + #transforms.RandomCrop(32, padding=4), |
| 48 | + transforms.RandomResizedCrop(size=32, scale=(0.2,1.)), |
| 49 | + transforms.RandomGrayscale(p=0.2), |
| 50 | + transforms.ColorJitter(0.4, 0.4, 0.4, 0.4), |
| 51 | + transforms.RandomHorizontalFlip(), |
| 52 | + transforms.ToTensor(), |
| 53 | + transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), |
| 54 | +]) |
| 55 | + |
| 56 | +transform_test = transforms.Compose([ |
| 57 | + transforms.ToTensor(), |
| 58 | + transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), |
| 59 | +]) |
| 60 | + |
| 61 | +trainset = datasets.CIFAR10Instance(root='./data', train=True, download=True, transform=transform_train) |
| 62 | +trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2) |
| 63 | + |
| 64 | +testset = datasets.CIFAR10Instance(root='./data', train=False, download=True, transform=transform_test) |
| 65 | +testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2) |
| 66 | + |
| 67 | +classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') |
| 68 | +ndata = trainset.__len__() |
| 69 | + |
| 70 | +# Model |
| 71 | +if args.test_only or len(args.resume)>0: |
| 72 | + # Load checkpoint. |
| 73 | + print('==> Resuming from checkpoint..') |
| 74 | + assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!' |
| 75 | + checkpoint = torch.load('./checkpoint/'+args.resume) |
| 76 | + net = checkpoint['net'] |
| 77 | + lemniscate = checkpoint['lemniscate'] |
| 78 | + best_acc = checkpoint['acc'] |
| 79 | + start_epoch = checkpoint['epoch'] |
| 80 | +else: |
| 81 | + print('==> Building model..') |
| 82 | + net = models.__dict__['ResNet18'](low_dim=args.low_dim) |
| 83 | + # define leminiscate |
| 84 | + lemniscate = LinearAverage(args.low_dim, ndata, args.temperature, args.memory_momentum) |
| 85 | + |
| 86 | +# define loss function |
| 87 | +criterion = NCACrossEntropy(torch.LongTensor(trainloader.dataset.train_labels)) |
| 88 | + |
| 89 | +if use_cuda: |
| 90 | + net.cuda() |
| 91 | + net = torch.nn.DataParallel(net, device_ids=range(torch.cuda.device_count())) |
| 92 | + lemniscate.cuda() |
| 93 | + criterion.cuda() |
| 94 | + cudnn.benchmark = True |
| 95 | + |
| 96 | +if args.test_only: |
| 97 | + acc = kNN(0, net, lemniscate, trainloader, testloader, 30, args.temperature) |
| 98 | + sys.exit(0) |
| 99 | + |
| 100 | +optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4, nesterov=True) |
| 101 | + |
| 102 | +def adjust_learning_rate(optimizer, epoch): |
| 103 | + """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" |
| 104 | + lr = args.lr * (0.1 ** (epoch // 50)) |
| 105 | + print(lr) |
| 106 | + for param_group in optimizer.param_groups: |
| 107 | + param_group['lr'] = lr |
| 108 | + |
| 109 | +# Training |
| 110 | +def train(epoch): |
| 111 | + print('\nEpoch: %d' % epoch) |
| 112 | + adjust_learning_rate(optimizer, epoch) |
| 113 | + train_loss = AverageMeter() |
| 114 | + data_time = AverageMeter() |
| 115 | + batch_time = AverageMeter() |
| 116 | + correct = 0 |
| 117 | + total = 0 |
| 118 | + |
| 119 | + # switch to train mode |
| 120 | + net.train() |
| 121 | + |
| 122 | + end = time.time() |
| 123 | + for batch_idx, (inputs, targets, indexes) in enumerate(trainloader): |
| 124 | + data_time.update(time.time() - end) |
| 125 | + if use_cuda: |
| 126 | + inputs, targets, indexes = inputs.cuda(), targets.cuda(), indexes.cuda() |
| 127 | + optimizer.zero_grad() |
| 128 | + |
| 129 | + features = net(inputs) |
| 130 | + outputs = lemniscate(features, indexes) |
| 131 | + loss = criterion(outputs, indexes) |
| 132 | + |
| 133 | + loss.backward() |
| 134 | + optimizer.step() |
| 135 | + |
| 136 | + train_loss.update(loss.item(), inputs.size(0)) |
| 137 | + |
| 138 | + # measure elapsed time |
| 139 | + batch_time.update(time.time() - end) |
| 140 | + end = time.time() |
| 141 | + |
| 142 | + print('Epoch: [{}][{}/{}]' |
| 143 | + 'Time: {batch_time.val:.3f} ({batch_time.avg:.3f}) ' |
| 144 | + 'Data: {data_time.val:.3f} ({data_time.avg:.3f}) ' |
| 145 | + 'Loss: {train_loss.val:.4f} ({train_loss.avg:.4f})'.format( |
| 146 | + epoch, batch_idx, len(trainloader), batch_time=batch_time, data_time=data_time, train_loss=train_loss)) |
| 147 | + |
| 148 | +for epoch in range(start_epoch, start_epoch+200): |
| 149 | + train(epoch) |
| 150 | + acc = kNN(epoch, net, lemniscate, trainloader, testloader, 30, args.temperature) |
| 151 | + |
| 152 | + if acc > best_acc: |
| 153 | + print('Saving..') |
| 154 | + state = { |
| 155 | + 'net': net.module if use_cuda else net, |
| 156 | + 'lemniscate': lemniscate, |
| 157 | + 'acc': acc, |
| 158 | + 'epoch': epoch, |
| 159 | + } |
| 160 | + if not os.path.isdir('checkpoint'): |
| 161 | + os.mkdir('checkpoint') |
| 162 | + torch.save(state, './checkpoint/ckpt.t7') |
| 163 | + best_acc = acc |
| 164 | + |
| 165 | + print('best accuracy: {:.2f}'.format(best_acc*100)) |
0 commit comments