-
Notifications
You must be signed in to change notification settings - Fork 22
/
nqptp-message-handlers.c
535 lines (477 loc) · 25.4 KB
/
nqptp-message-handlers.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
/*
* This file is part of the nqptp distribution (https://github.com/mikebrady/nqptp).
* Copyright (c) 2021-2022 Mike Brady.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Commercial licensing is also available.
*/
#include <arpa/inet.h> // ntohl and ntohs
#include <string.h> //strsep
#include <stdio.h> // snprintf
#include <stdlib.h> // drand48
#include <unistd.h> // usleep
#include "debug.h"
#include "general-utilities.h"
#include "nqptp-message-handlers.h"
#include "nqptp-ptp-definitions.h"
#include "nqptp-utilities.h"
char hexcharbuffer[16384];
int reset_clock_smoothing = 0;
uint64_t clock_validity_expiration_time = 0;
int clock_is_active = 0;
char *hex_string(void *buf, size_t buf_len) {
char *tbuf = (char *)buf;
char *obfp = hexcharbuffer;
size_t obfc;
for (obfc = 0; obfc < buf_len; obfc++) {
snprintf(obfp, 3, "%02X", *tbuf);
obfp += 2;
tbuf = tbuf + 1;
};
*obfp = 0;
return hexcharbuffer;
}
void handle_control_port_messages(char *buf, ssize_t recv_len,
clock_source_private_data *clock_private_info,
uint64_t reception_time) {
if (recv_len != -1) {
if ((buf != NULL) && (recv_len > 0)) {
buf[recv_len - 1] = 0; // we know it's not empty, so make sure there's a null in it.
debug(2, "New control port message: \"%s\".", buf);
// we need to get the client shared memory interface name from the front
char *ip_list = buf;
char *smi_name = strsep(&ip_list, " ");
char *command = NULL;
if (smi_name != NULL) {
if (ip_list != NULL)
command = strsep(&ip_list, " ");
// "B" is for play begin/resume. Assumes a "T <ip>" already
// "E" is for play end/stop.
// "P" is for pause (currently Buffered Audio only).
//
// "T <ip>" is for the IP address of a timer.
// "T" means no active timer.
// clock_is_active is made true by Play and false by Pause or End.
if (command != NULL) {
if ((strcmp(command, "B") == 0) && (ip_list == NULL)) {
debug(2, "Play.");
// We want to avoid, as much as possible, resetting the clock smoothing.
// If we know the clock is already active or
// if it's only been a short time since we know it was last active
// then we will not reset the clock.
if (clock_is_active) {
debug(2, "clock is already active");
} else {
// Find out if the clock is active i.e. not sleeping.
// We know it is active between "B" and "E" commands.
// We also know it is active for brief periods after the "T" and "E" commands are
// received. If it is not definitely active, we will reset smoothing.
int will_ask_for_a_reset = 0;
if (clock_validity_expiration_time == 0) {
debug(1, "no clock_validity_expiration_time.");
will_ask_for_a_reset = 1;
} else {
int64_t time_to_clock_expiration = clock_validity_expiration_time - reception_time;
// timings obtained with an iPhone Xs Max on battery save
// around 30 seconds at a buffered audio pause on an iphone.
// around 1 second after a buffered audio stop on an iphone
// 10 seconds after a "T" from an iPhone that immediately sleeps
// more than a minute from "T" from a HomePod mini.
if (time_to_clock_expiration < 0) {
debug(2, "Clock validity may have expired, so ask for a reset.");
will_ask_for_a_reset = 1;
}
}
if (will_ask_for_a_reset != 0) {
debug(2, "Reset clock smoothing");
reset_clock_smoothing = 1;
}
}
clock_is_active = 1;
clock_validity_expiration_time = 0;
} else if ((strcmp(command, "E") == 0) && (ip_list == NULL)) {
debug(2, "Stop");
if (clock_is_active) {
debug(2, "reset clock_validity_expiration_time to 2.25 seconds in the future.");
clock_validity_expiration_time =
reception_time + 2250000000; // expiration time can be very soon after an "E"
clock_is_active = 0;
} else {
debug(2, "clock is already inactive.");
}
} else if ((strcmp(command, "P") == 0) && (ip_list == NULL)) {
debug(2, "Pause");
// A pause always seems to turn into a Stop in now more than a few seconds, and the
// clock keeps going, it seems so there is nothing to do here.
} else if ((command == NULL) || ((strcmp(command, "T") == 0) && (ip_list == NULL))) {
debug(2, "Stop Timing");
clock_is_active = 0;
debug(2, "Clear timing peer group.");
// dirty experimental hack -- delete all the clocks
int gc;
for (gc = 0; gc < MAX_CLOCKS; gc++) {
memset(&clock_private_info[gc], 0, sizeof(clock_source_private_data));
}
update_master_clock_info(0, NULL, 0, 0, 0); // the SMI may have obsolete stuff in it
} else {
debug(2, "Start Timing");
// dirty experimental hack -- delete all the clocks
int gc;
for (gc = 0; gc < MAX_CLOCKS; gc++) {
memset(&clock_private_info[gc], 0, sizeof(clock_source_private_data));
}
debug(2, "get or create new record for \"%s\".", smi_name);
// client_id = get_client_id(smi_name); // create the record if it doesn't exist
// if (client_id != -1) {
if (strcmp(command, "T") == 0) {
int i;
for (i = 0; i < MAX_CLOCKS; i++) {
clock_private_info[i].announcements_without_followups =
0; // to allow a possibly silent clock to be revisited when added to a timing
// peer list
clock_private_info[i].follow_up_number = 0;
}
// take the first ip and make it the master, permanently
if (ip_list != NULL) {
char *new_ip = strsep(&ip_list, " ");
// look for the IP in the list of clocks, and create an inert entry if not there
if ((new_ip != NULL) && (new_ip[0] != 0)) {
int t = find_clock_source_record(new_ip, clock_private_info);
if (t == -1)
t = create_clock_source_record(new_ip, clock_private_info);
if (t != -1) { // if the clock table is not full, okay
debug(2, "Monitor clock at %s.", new_ip);
}
// otherwise, drop it
}
}
// a new clock timing record will be started now
debug(2, "reset clock_validity_expiration_time to 5.0 seconds in the future.");
clock_validity_expiration_time =
reception_time + 5000000000L; // clock can stop as soon as 6 seconds after a "T"
} else {
warn("Unrecognised string on the control port.");
}
// } else {
// warn("Could not find or create a record for SMI Interface \"%s\".",
// smi_name);
// }
}
}
} else {
warn("SMI Interface Name not found on the control port.");
}
} else {
warn("Missing or empty packet on the control port.");
}
} else {
warn("Bad packet on the control port.");
}
}
void handle_announce(char *buf, ssize_t recv_len, clock_source_private_data *clock_private_info,
__attribute__((unused)) uint64_t reception_time) {
// debug_print_buffer(1, buf, (size_t) recv_len);
// make way for the new time
if ((size_t)recv_len >= sizeof(struct ptp_announce_message)) {
struct ptp_announce_message *msg = (struct ptp_announce_message *)buf;
uint64_t packet_clock_id = nctohl(&msg->header.clockIdentity[0]);
uint64_t packet_clock_id_low = nctohl(&msg->header.clockIdentity[4]);
packet_clock_id = packet_clock_id << 32;
packet_clock_id = packet_clock_id + packet_clock_id_low;
clock_private_info->clock_id = packet_clock_id;
clock_private_info->grandmasterPriority1 =
msg->announce.grandmasterPriority1; // need this for possibly pinging it later...
clock_private_info->grandmasterPriority2 =
msg->announce.grandmasterPriority2; // need this for possibly pinging it later...
debug(2, "announcement seen from %" PRIx64 " at %s.", clock_private_info->clock_id,
clock_private_info->ip);
if (clock_private_info->announcements_without_followups < 5) // don't keep going forever
// a value of 4 means it's parked --
// it has seen three, poked the clock and doesn't want to do any more.
clock_private_info->announcements_without_followups++;
uint64_t grandmaster_clock_id = nctohl(&msg->announce.grandmasterIdentity[0]);
uint64_t grandmaster_clock_id_low = nctohl(&msg->announce.grandmasterIdentity[4]);
grandmaster_clock_id = grandmaster_clock_id << 32;
grandmaster_clock_id = grandmaster_clock_id + grandmaster_clock_id_low;
uint32_t clockQuality = ntohl(msg->announce.grandmasterClockQuality);
uint8_t clockClass = (clockQuality >> 24) & 0xff;
uint8_t clockAccuracy = (clockQuality >> 16) & 0xff;
uint16_t offsetScaledLogVariance = clockQuality & 0xffff;
uint16_t stepsRemoved = ntohs(msg->announce.stepsRemoved);
uint16_t sourcePortID = ntohs(msg->header.sourcePortID);
clock_private_info->grandmasterIdentity = grandmaster_clock_id;
clock_private_info->grandmasterPriority1 = msg->announce.grandmasterPriority1;
clock_private_info->grandmasterQuality = clockQuality;
clock_private_info->grandmasterClass = clockClass;
clock_private_info->grandmasterAccuracy = clockAccuracy;
clock_private_info->grandmasterVariance = offsetScaledLogVariance;
clock_private_info->grandmasterPriority2 = msg->announce.grandmasterPriority2;
clock_private_info->stepsRemoved = stepsRemoved;
clock_private_info->clock_port_number = sourcePortID;
if (clock_private_info->wakeup_sent == 0) {
send_awakening_announcement_sequence(
clock_private_info->clock_id, clock_private_info->ip, clock_private_info->family,
clock_private_info->grandmasterPriority1, clock_private_info->grandmasterPriority2);
clock_private_info->wakeup_sent = 1;
}
}
}
void handle_sync(char *buf, ssize_t recv_len, clock_source_private_data *clock_private_info,
__attribute__((unused)) uint64_t reception_time) {
/*
// diagnostic -- decide whether to delay the processing of the follow_up to simulate a noisy
network if (drand48() < 0.015) {
// generate a random delay between 10 and 3500 milliseconds
int delay = (int)((3000 - 60) * drand48()) + 60;
debug(1,"Delay sync processing by %u milliseconds.", delay);
usleep(delay * 1000);
reception_time = get_time_now();
}
*/
if (clock_private_info->clock_id == 0) {
debug(2, "Sync received before announcement -- discarded.");
} else {
if ((recv_len >= 0) && ((size_t)recv_len >= sizeof(struct ptp_sync_message))) {
// debug_print_buffer(1, buf, recv_len);
struct ptp_sync_message *msg = (struct ptp_sync_message *)buf;
// clang-format off
// actually the precision timestamp needs to be corrected by the Follow_Up Correction_Field contents.
// According to IEEE Std 802.1AS-2020, paragraph 11.4.4.2.1:
/*
The value of the preciseOriginTimestamp field is the sourceTime of the ClockMaster entity of the Grandmaster PTP Instance,
when the associated Sync message was sent by that Grandmaster PTP Instance, with any fractional nanoseconds truncated (see 10.2.9).
The sum of the correctionFields in the Follow_Up and associated Sync messages, added to the preciseOriginTimestamp field of the Follow_Up message,
is the value of the synchronized time corresponding to the syncEventEgressTimestamp at the PTP Instance that sent the associated Sync message,
including any fractional nanoseconds.
*/
// clang-format on
int64_t correction_field = ntoh64(msg->header.correctionField);
if (correction_field != 0)
debug(1, "Sync correction field is non-zero: %" PRId64 " ns.", correction_field);
correction_field = correction_field / 65536; // might be signed
} else {
debug(1, "Sync message is too small to be valid.");
}
}
}
void handle_follow_up(char *buf, ssize_t recv_len, clock_source_private_data *clock_private_info,
uint64_t reception_time) {
if (clock_private_info->clock_id == 0) {
debug(2, "Follow_Up received before announcement -- discarded.");
} else {
clock_private_info->announcements_without_followups = 0;
if ((recv_len >= 0) && ((size_t)recv_len >= sizeof(struct ptp_follow_up_message))) {
// debug_print_buffer(1, buf, recv_len);
struct ptp_follow_up_message *msg = (struct ptp_follow_up_message *)buf;
uint16_t seconds_hi = nctohs(&msg->follow_up.preciseOriginTimestamp[0]);
uint32_t seconds_low = nctohl(&msg->follow_up.preciseOriginTimestamp[2]);
uint32_t nanoseconds = nctohl(&msg->follow_up.preciseOriginTimestamp[6]);
uint64_t preciseOriginTimestamp = seconds_hi;
preciseOriginTimestamp = preciseOriginTimestamp << 32;
preciseOriginTimestamp = preciseOriginTimestamp + seconds_low;
preciseOriginTimestamp = preciseOriginTimestamp * 1000000000L;
preciseOriginTimestamp = preciseOriginTimestamp + nanoseconds;
// update our sample information
int grandmasterClockIsStopped = 0;
if ((clock_private_info->previous_preciseOriginTimestamp == preciseOriginTimestamp) &&
(clock_private_info->clock_id == clock_private_info->grandmasterIdentity)) {
clock_private_info->identical_previous_preciseOriginTimestamp_count++;
grandmasterClockIsStopped = 1;
if (clock_private_info->identical_previous_preciseOriginTimestamp_count == 8 * 60) {
int64_t duration_of_mastership =
reception_time - clock_private_info->mastership_start_time;
if (clock_private_info->mastership_start_time == 0)
duration_of_mastership = 0;
debug(2,
"Clock %" PRIx64 "'s grandmaster clock has stopped after %f seconds of mastership.",
clock_private_info->clock_id, 0.000000001 * duration_of_mastership);
int64_t wait_limit = 62;
wait_limit = wait_limit * 1000000000;
// only try to restart a grandmaster clock on the clock itself.
if ((duration_of_mastership <= wait_limit) &&
(clock_private_info->clock_id == clock_private_info->grandmasterIdentity)) {
debug(2,
"Attempt to start a stopped clock %" PRIx64 ", at follow_up_number %u at IP %s.",
clock_private_info->clock_id, clock_private_info->follow_up_number,
clock_private_info->ip);
send_awakening_announcement_sequence(
clock_private_info->clock_id, clock_private_info->ip, clock_private_info->family,
clock_private_info->grandmasterPriority1, clock_private_info->grandmasterPriority2);
}
}
} else {
clock_private_info->identical_previous_preciseOriginTimestamp_count = 0;
}
clock_private_info->previous_preciseOriginTimestamp = preciseOriginTimestamp;
// clang-format off
// actually the precision timestamp needs to be corrected by the Follow_Up Correction_Field contents.
// According to IEEE Std 802.1AS-2020, paragraph 11.4.4.2.1:
/*
The value of the preciseOriginTimestamp field is the sourceTime of the ClockMaster entity of the Grandmaster PTP Instance,
when the associated Sync message was sent by that Grandmaster PTP Instance, with any fractional nanoseconds truncated (see 10.2.9).
The sum of the correctionFields in the Follow_Up and associated Sync messages, added to the preciseOriginTimestamp field of the Follow_Up message,
is the value of the synchronized time corresponding to the syncEventEgressTimestamp at the PTP Instance that sent the associated Sync message,
including any fractional nanoseconds.
*/
// clang-format on
int64_t correction_field = ntoh64(msg->header.correctionField);
// debug(1," Check ntoh64: in: %" PRIx64 ", out: %" PRIx64 ".", msg->header.correctionField,
// correction_field);
correction_field = correction_field / 65536; // might be signed
uint64_t correctedPreciseOriginTimestamp = preciseOriginTimestamp + correction_field;
if (clock_private_info->follow_up_number < 100)
clock_private_info->follow_up_number++;
// if (clock_private_info->announcements_without_followups < 4) // if we haven't signalled
// already
clock_private_info->announcements_without_followups = 0; // we've seen a followup
debug(2, "FOLLOWUP from %" PRIx64 ", %s.", clock_private_info->clock_id,
&clock_private_info->ip);
uint64_t offset = correctedPreciseOriginTimestamp - reception_time;
int64_t jitter = 0;
int64_t time_since_previous_offset = 0;
uint64_t smoothed_offset = offset;
// This is a bit hacky.
// Basically, the idea is that if the grandmaster has changed, then acceptance checking and
// smoothing should start as it it's a new clock. This is because the
// correctedPreciseOriginTimestamp, which is part of the data that is being smoothed, refers
// to the grandmaster, so when the grandmaster changes any previous calculations are no
// longer valid. The hacky bit is to signal this condition by zeroing the
// previous_offset_time.
if (clock_private_info->previous_offset_grandmaster !=
clock_private_info->grandmasterIdentity) {
clock_private_info->previous_offset_time = 0;
if (clock_private_info->previous_offset_grandmaster == 0)
debug(1, "grandmaster is %" PRIx64 ".", clock_private_info->grandmasterIdentity);
else
debug(1, "grandmaster has changed from %" PRIx64 " to %" PRIx64 ".",
clock_private_info->previous_offset_grandmaster,
clock_private_info->grandmasterIdentity);
}
// Do acceptance checking and smoothing.
// Positive changes in the offset are much more likely to be
// legitimate, since they could only occur due to a shorter
// propagation time or less of a delay sending or receiving the packet.
// When the clock is new, we give preferential weighting to
// positive changes in the offset to allow the clock to sync up quickly.
// If the new offset is greater, by any amount, than the old offset,
// or if it is less by up to the clamping_limit, accept it.
// This seems to be quite stable
if (reset_clock_smoothing == 0) {
if (clock_private_info->previous_offset_time != 0) {
time_since_previous_offset = reception_time - clock_private_info->previous_offset_time;
jitter = offset - clock_private_info->previous_offset;
}
// We take any positive or a limited negative jitter as a sync event in
// a continuous synchronisation sequence.
// The full value of a positive offset jitter is accepted for a
// number of follow_ups at the start.
// After that, the weight of the jitter is reduced.
// Follow-ups don't always come in at 125 ms intervals, especially after a discontinuity
// Delays makes the offsets smaller than they should be, which is quickly
// allowed for.
const int64_t clamping_limit = -2500000; // nanoseconds
int64_t mastership_time = reception_time - clock_private_info->mastership_start_time;
if (clock_private_info->mastership_start_time == 0)
mastership_time = 0;
// if ((clock_private_info->previous_offset_time != 0) &&
// (clock_private_info->identical_previous_preciseOriginTimestamp_count <= 1)) {
if (clock_private_info->previous_offset_time != 0) {
if (jitter < 0) {
int64_t clamped_jitter = jitter;
if (clamped_jitter < clamping_limit) {
clamped_jitter = clamping_limit; // 0 means ignore a clamped value completely
}
// if (mastership_time < 1000000000) // at the beginning, if jitter is negative
// smoothed_offset = clock_private_info->previous_offset + clamped_jitter / 16;
// else
// ignore negative jitter at first...
smoothed_offset = clock_private_info->previous_offset;
if (mastership_time > 1000000000)
smoothed_offset += clamped_jitter / 256; // later, if jitter is negative
} else if (mastership_time < 1000000000) { // at the beginning
smoothed_offset =
clock_private_info->previous_offset +
jitter /
1; // at the beginning, if jitter is positive -- accept positive changes quickly
} else {
smoothed_offset =
clock_private_info->previous_offset + jitter / 16; // later, if jitter is positive
}
} else {
if (clock_private_info->previous_offset_time == 0)
debug(2, "Clock %" PRIx64 " record (re)starting at %s.", clock_private_info->clock_id,
clock_private_info->ip);
else
debug(2,
"Timing discontinuity on clock %" PRIx64
" at %s: time_since_previous_offset: %.3f seconds%s.",
clock_private_info->clock_id, clock_private_info->ip,
0.000000001 * time_since_previous_offset,
grandmasterClockIsStopped != 0 ? ", grandmaster clock stopped" : "");
smoothed_offset = offset;
// clock_private_info->follow_up_number = 0;
clock_private_info->mastership_start_time =
reception_time; // mastership is reset to this time...
}
int64_t delta = smoothed_offset - offset;
debug(2,
"Clock %" PRIx64 ", grandmaster %" PRIx64 ". Offset: %" PRIx64
", smoothed offset: %" PRIx64
". Smoothed Offset - Offset: %10.3f. Raw Precise Origin Timestamp: %" PRIx64
"%s correction_field: %" PRIx64
". Time since previous offset: %8.3f milliseconds. ID: %5u, Follow_Up Number: "
"%u. Source: %s",
clock_private_info->clock_id, clock_private_info->grandmasterIdentity, offset,
smoothed_offset, 0.000001 * delta, preciseOriginTimestamp,
clock_is_active != 0 ? ". " : "*.", correction_field,
0.000001 * time_since_previous_offset, ntohs(msg->header.sequenceId),
clock_private_info->follow_up_number, clock_private_info->ip);
if (clock_is_active) {
update_master_clock_info(clock_private_info->grandmasterIdentity,
(const char *)&clock_private_info->ip, reception_time,
smoothed_offset, clock_private_info->mastership_start_time);
} else {
update_master_clock_info(0, NULL, 0, 0, 0); // the SMI may have obsolete stuff in it
}
clock_private_info->previous_offset = smoothed_offset;
clock_private_info->previous_offset_time = reception_time;
} else {
reset_clock_smoothing = 0;
clock_private_info->mastership_start_time = 0;
clock_private_info->previous_offset = 0;
clock_private_info->previous_offset_time =
0; // so that the first non-stopped sample will be taken as the first one in a sequence
}
clock_private_info->previous_offset_grandmaster = clock_private_info->grandmasterIdentity;
// now do some quick calculations on the possible "Universal Time"
// debug_print_buffer(1, "", buf, recv_len);
uint8_t *tlv = (uint8_t *)&msg->follow_up.tlvs[0];
uint8_t *lastGmPhaseChange = tlv + 16;
uint64_t lpt = nctoh64(lastGmPhaseChange + 4);
uint64_t last_tlv_clock = nctoh64((uint8_t *)buf + 86);
uint64_t huh = offset - lpt;
debug_print_buffer(2, buf, (size_t)recv_len);
debug(2,
"%" PRIx64 ", %" PRIx64 ", %s, Origin: %016" PRIx64 ", LPT: %016" PRIx64
", Offset: %016" PRIx64 ", Universal Offset: %016" PRIx64 ", packet length: %u.",
clock_private_info->clock_id, last_tlv_clock, hex_string(lastGmPhaseChange, 12),
preciseOriginTimestamp, lpt, offset, huh, recv_len);
// debug(1,"Clock: %" PRIx64 ", UT: %016" PRIx64 ", correctedPOT: %016" PRIx64 ", part of
// lastGMPhaseChange: %016" PRIx64 ".", packet_clock_id, correctedPOT - lpt, correctedPOT,
// lpt);
} else {
debug(1, "Follow_Up message is too small to be valid.");
}
}
}