-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathUniquePaths62.kt
64 lines (45 loc) · 1.23 KB
/
UniquePaths62.kt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
package medium
/**
* A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Example 1:
Input: m = 3, n = 7
Output: 28
Example 2:
Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Down -> Down
2. Down -> Down -> Right
3. Down -> Right -> Down
Example 3:
Input: m = 7, n = 3
Output: 28
Example 4:
Input: m = 3, n = 3
Output: 6
*/
fun uniquePaths(m: Int, n: Int): Int {
val dp = Array(m){IntArray(n)}
for(i in 0 until m)
dp[i][0]=1
for(i in 0 until n)
dp[0][i]=1
for (i in 1 until m)
for(j in 1 until n)
dp[i][j]= dp[i-1][j]+dp[i][j-1]
return dp[m-1][n-1]
}
var count=0
fun uniquePathsSol2(m: Int, n: Int): Int {
countUniquePaths(m, n,0, 0)
return count
}
fun countUniquePaths(m: Int, n: Int, i: Int, j:Int) {
if(i>=m || j >= n) return
if (i==m-1 && j == n-1) count++
countUniquePaths(m,n,i+1,j)
countUniquePaths(m,n,i,j+1)
}