-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy pathgan.py
278 lines (204 loc) · 9.43 KB
/
gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
"""
Standard GAN implemented on top of keras/tensorflow.
"""
import os
import pickle
import sys
from keras import applications
from keras import layers
from keras import models
from keras import optimizers
from keras.preprocessing import image
import numpy as np
from PIL import Image
from dlutils import plot_image_batch_w_labels
#
# directory paths
#
path = os.path.dirname(os.path.abspath(__file__))
cache_dir = os.path.join(path, 'cache')
#
# generator input params
#
rand_dim = 64 # dimension of generator's input tensor (gaussian noise)
#
# image dimensions
#
img_height = 28
img_width = 28
img_channels = 3
#
# training params
#
nb_steps = 10000
batch_size = 64
k_d = 1 # number of discriminator network updates per adversarial training step
k_g = 1 # number of generative network updates per adversarial training step
#
# logging params
#
log_interval = 100 # interval (in steps) at which to log loss summaries and save plots of image samples to disc
fixed_noise = np.random.normal(size=(batch_size, rand_dim)) # fixed noise to generate batches of generated images
#
# shared network params
#
kernel_size = 4
conv_layer_keyword_args = {'strides': 2, 'padding': 'same'}
#
# generator and discriminator architecture from: https://github.com/buriburisuri/ac-gan
#
def generator_network(x):
def add_common_layers(y):
y = layers.advanced_activations.LeakyReLU()(y)
y = layers.Dropout(0.25)(y)
return y
x = layers.Dense(1024)(x)
x = add_common_layers(x)
#
# input dimensions to the first de-conv layer in the generator
#
height_dim = 7
width_dim = 7
assert img_height % height_dim == 0 and img_width % width_dim == 0, \
'Generator network must be able to transform `x` into a tensor of shape (img_height, img_width, img_channels).'
x = layers.Dense(height_dim * width_dim * 128)(x)
x = add_common_layers(x)
x = layers.Reshape((height_dim, width_dim, -1))(x)
x = layers.Conv2DTranspose(64, kernel_size, **conv_layer_keyword_args)(x)
x = add_common_layers(x)
# number of feature maps => number of image channels
return layers.Conv2DTranspose(img_channels, 1, strides=2, padding='same', activation='tanh')(x)
def discriminator_network(x):
def add_common_layers(y):
y = layers.advanced_activations.LeakyReLU()(y)
y = layers.Dropout(0.25)(y)
return y
x = layers.GaussianNoise(stddev=0.2)(x)
x = layers.Conv2D(64, kernel_size, **conv_layer_keyword_args)(x)
x = add_common_layers(x)
x = layers.Conv2D(128, kernel_size, **conv_layer_keyword_args)(x)
x = add_common_layers(x)
x = layers.Flatten()(x)
x = layers.Dense(1024)(x)
x = add_common_layers(x)
return layers.Dense(1, activation='sigmoid')(x)
def adversarial_training(data_dir, generator_model_path, discriminator_model_path):
"""
Adversarial training of the generator network Gθ and discriminator network Dφ.
"""
#
# define model input and output tensors
#
generator_input_tensor = layers.Input(shape=(rand_dim, ))
generated_image_tensor = generator_network(generator_input_tensor)
generated_or_real_image_tensor = layers.Input(shape=(img_height, img_width, img_channels))
discriminator_output = discriminator_network(generated_or_real_image_tensor)
#
# define models
#
generator_model = models.Model(inputs=[generator_input_tensor], outputs=[generated_image_tensor],
name='generator')
discriminator_model = models.Model(inputs=[generated_or_real_image_tensor], outputs=[discriminator_output],
name='discriminator')
combined_output = discriminator_model(generator_model(generator_input_tensor))
combined_model = models.Model(inputs=[generator_input_tensor], outputs=[combined_output], name='combined')
#
# compile models
#
adam = optimizers.Adam(lr=0.0002, beta_1=0.5, beta_2=0.999) # as described in appendix A of DeepMind's AC-GAN paper
generator_model.compile(optimizer=adam, loss='binary_crossentropy')
discriminator_model.compile(optimizer=adam, loss='binary_crossentropy')
discriminator_model.trainable = False
combined_model.compile(optimizer=adam, loss='binary_crossentropy')
print(generator_model.summary())
print(discriminator_model.summary())
print(combined_model.summary())
#
# data generators
#
data_generator = image.ImageDataGenerator(
preprocessing_function=applications.xception.preprocess_input,
data_format='channels_last',
rotation_range=180.0,
width_shift_range=0.1,
height_shift_range=0.1,
shear_range=0.1,
zoom_range=0.1,
channel_shift_range=0.1,
horizontal_flip=True,
vertical_flip=True)
flow_from_directory_params = {'target_size': (img_height, img_width),
'color_mode': 'grayscale' if img_channels == 1 else 'rgb',
'class_mode': None,
'batch_size': batch_size}
real_image_generator = data_generator.flow_from_directory(
directory=data_dir,
**flow_from_directory_params
)
def get_image_batch():
img_batch = real_image_generator.next()
# keras generators may generate an incomplete batch for the last batch in an epoch of data
if len(img_batch) != batch_size:
img_batch = real_image_generator.next()
assert img_batch.shape == (batch_size, img_height, img_width, img_channels), img_batch.shape
return img_batch
combined_loss = np.empty(shape=1)
disc_loss_real = np.empty(shape=1)
disc_loss_generated = np.empty(shape=1)
if generator_model_path:
generator_model.load_weights(generator_model_path, by_name=True)
if discriminator_model_path:
discriminator_model.load_weights(discriminator_model_path, by_name=True)
for i in range(nb_steps):
print('Step: {} of {}.'.format(i, nb_steps))
# train the discriminator
for _ in range(k_d):
# sample a mini-batch of noise (generator input)
z = np.random.normal(size=(batch_size, rand_dim))
# sample a mini-batch of real images
x = get_image_batch()
# generate a batch of images with the current generator
g_z = generator_model.predict(z)
# update φ by taking an SGD step on mini-batch loss LD(φ)
disc_loss_real = np.append(disc_loss_real, discriminator_model.train_on_batch(x, np.random.uniform(
low=0.7, high=1.2, size=batch_size)))
disc_loss_generated = np.append(disc_loss_generated, discriminator_model.train_on_batch(g_z,
np.random.uniform(low=0.0, high=0.3, size=batch_size)))
# train the generator
for _ in range(k_g * 2):
z = np.random.normal(size=(batch_size, rand_dim))
# update θ by taking an SGD step on mini-batch loss LR(θ)
combined_loss = np.append(combined_loss, combined_model.train_on_batch(z, np.random.uniform(
low=0.7, high=1.2, size=batch_size)))
if not i % log_interval and i != 0:
# plot batch of generated images w/ current generator
figure_name = 'generated_image_batch_step_{}.png'.format(i)
print('Saving batch of generated images at adversarial step: {}.'.format(i))
g_z = generator_model.predict(fixed_noise)
x = get_image_batch()
# save one generated image to disc
Image.fromarray(g_z[0], mode='RGB').save(os.path.join(cache_dir, 'generated_image_step_{}.png').format(i))
# save a batch of generated and real images to disc
plot_image_batch_w_labels.plot_batch(np.concatenate((g_z, x)), os.path.join(cache_dir, figure_name),
label_batch=['generated'] * batch_size + ['real'] * batch_size)
# log loss summary
print('Generator model loss: {}.'.format(np.mean(combined_loss[-log_interval:], axis=0)))
print('Discriminator model loss real: {}.'.format(np.mean(disc_loss_real[-log_interval:], axis=0)))
print('Discriminator model loss generated: {}.'.format(np.mean(disc_loss_generated[-log_interval:], axis=0)))
# save model checkpoints
model_checkpoint_base_name = os.path.join(cache_dir, '{}_model_weights_step_{}.h5')
generator_model.save_weights(model_checkpoint_base_name.format('generator', i))
discriminator_model.save_weights(model_checkpoint_base_name.format('discriminator', i))
# write the losses to disc as a serialized dict
with open(os.path.join(cache_dir, 'losses.pickle'), 'wb') as handle:
pickle.dump({'combined_loss': combined_loss,
'disc_loss_real': disc_loss_real,
'disc_loss_generated': disc_loss_generated},
handle, protocol=pickle.HIGHEST_PROTOCOL)
def main(data_dir, generator_model_path, discriminator_model_path):
adversarial_training(data_dir, generator_model_path, discriminator_model_path)
if __name__ == '__main__':
# Note: if pre-trained models are passed in we don't take the steps they've been trained for into account
gen_model_path = sys.argv[2] if len(sys.argv) >= 3 else None
disc_model_path = sys.argv[3] if len(sys.argv) >= 4 else None
main(sys.argv[1], gen_model_path, disc_model_path)