@@ -54,7 +54,7 @@ offers a comprehensive approach to minimizing operational disruptions.
54
54
:figwidth: 1200px
55
55
:alt: Components of an Event-Driven Architecture
56
56
57
- Figure 1: Components of an Event-Driven Architecture
57
+ Figure 1: Components of an Event-Driven Architecture
58
58
59
59
The solution delivers:
60
60
@@ -81,19 +81,19 @@ event-driven architecture that consists of several key components:
81
81
.. procedure::
82
82
:style: normal
83
83
84
- .. step:: **Data generation and processing :**
84
+ .. step:: **Data Generation and Processing :**
85
85
86
86
- FastAPI microservice housing Real-Time Data Simulator and Path Finder
87
87
- PubSub topics handling both static and real-time data streams
88
88
- Cloud Functions for processing application and telemetry data
89
89
90
- .. step:: **Analytics and cost management :**
90
+ .. step:: **Analytics and Cost Management :**
91
91
92
92
- Vertex AI Cost Calculator for financial impact analysis
93
93
- Analytical data creator Cloud Function for data transformation
94
94
- Aggregation pipeline for complex data processing
95
95
96
- .. step:: **Database structure :**
96
+ .. step:: **Database Structure :**
97
97
98
98
- MongoDB database as the central data store
99
99
- Specialized collections:
@@ -105,7 +105,7 @@ event-driven architecture that consists of several key components:
105
105
<https://www.mongodb.com/docs/manual/core/timeseries-collections/>`__ )
106
106
- **flights** collection for comprehensive general flight information management
107
107
108
- .. step:: **Integration components :**
108
+ .. step:: **Integration Components :**
109
109
110
110
- Change Streams for real-time data changes
111
111
- Google Maps API for visualizing geographical data
@@ -121,7 +121,7 @@ event-driven architecture that consists of several key components:
121
121
:figwidth: 1200px
122
122
:alt: Event-Driven Architecture
123
123
124
- Figure 2: Event-Driven Architecture
124
+ Figure 2. Event-Driven Architecture
125
125
126
126
The solution specifically addresses delay management by providing
127
127
real-time monitoring, predictive insights, and resource optimization
@@ -141,7 +141,7 @@ Building the Solution
141
141
.. procedure::
142
142
:style: normal
143
143
144
- .. step:: `Set up MongoDB
144
+ .. step:: `Set Up MongoDB
145
145
<https://github.com/mongodb-industry-solutions/leafy-airline/blob/main/README.md#prerequisites>`__
146
146
- Store flight data in flexible schema
147
147
- Support for real-time updates
@@ -151,7 +151,7 @@ Building the Solution
151
151
configuration and integration steps
152
152
- Example model
153
153
154
- .. step:: Configure `GCP services <https://github.com/mongodb-industry-solutions/leafy-airline/blob/main/README.md#prerequisites>`__
154
+ .. step:: Configure `GCP Services <https://github.com/mongodb-industry-solutions/leafy-airline/blob/main/README.md#prerequisites>`__
155
155
- Deploy application as a containerized service using Google Cloud’s Cloud Run
156
156
- Configure Google Cloud’s Cloud Build for automated deployments
157
157
- Set up Google Cloud’s Cloud Storage for assets
@@ -234,16 +234,16 @@ Building the Solution
234
234
print(f"Error updating document: {e}")
235
235
236
236
finally:
237
- client.close()
237
+ client.close()
238
238
239
- .. step:: `Install your demo application to run locally
239
+ .. step:: `Install Your Demo Application to Run Locally
240
240
<https://github.com/mongodb-industry-solutions/leafy-airline/blob/main/README.md#prerequisites>`__
241
241
- Clone the repository and install dependencies
242
242
- Configure environment variables
243
243
- Set up MongoDB connection
244
244
- Run development server
245
245
246
- .. step:: `(Optional) Deploy the solution
246
+ .. step:: `(Optional) Deploy the Solution
247
247
<https://github.com/mongodb-industry-solutions/leafy-airline/blob/main/README.md#deployment>`__
248
248
- Containerize application using Docker
249
249
- Deploy to Google Cloud’s Cloud Run for automatic scaling
@@ -256,13 +256,13 @@ Building the Solution
256
256
:figwidth: 1200px
257
257
:alt: Flight management dashboard with filters
258
258
259
- Figure 3: Flight management dashboard with filters
259
+ Figure 3. Flight management dashboard with filters
260
260
261
261
.. figure:: /includes/images/industry-solutions/Airline Fig2.svg
262
262
:figwidth: 1200px
263
263
:alt: Flight route and cost monitoring
264
264
265
- Figure 4: Flight route and cost monitoring
265
+ Figure 4. Flight route and cost monitoring
266
266
267
267
This solution provides a scalable, event-driven architecture that
268
268
enables airlines to manage flight operations efficiently while
@@ -300,16 +300,16 @@ Key Learnings
300
300
Technologies and Products Used
301
301
------------------------------
302
302
303
- MongoDB modern, multi-cloud database platform:
304
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
303
+ MongoDB Developer Data Platform
304
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
305
305
306
306
- `MongoDB Atlas <https://www.mongodb.com/atlas>`__
307
307
- `Time Series Collections <https://www.mongodb.com/products/capabilities/time-series>`__
308
308
- `Aggregation Pipeline <https://www.mongodb.com/docs/manual/core/aggregation-pipeline/>`__
309
309
- `Change Streams <https://www.mongodb.com/docs/manual/changeStreams/>`__
310
310
311
- Partner technologies:
312
- ~~~~~~~~~~~~~~~~~~~~~
311
+ Partner Technologies
312
+ ~~~~~~~~~~~~~~~~~~~~
313
313
314
314
- `Google Cloud Platform <https://cloud.google.com/>`__
315
315
- `PubSub <https://cloud.google.com/pubsub>`__
0 commit comments