diff --git a/linearApproximation/exercises/linearApproximation4.tex b/linearApproximation/exercises/linearApproximation4.tex index ab600b818..b9195f2ae 100644 --- a/linearApproximation/exercises/linearApproximation4.tex +++ b/linearApproximation/exercises/linearApproximation4.tex @@ -15,25 +15,7 @@ \begin{hint} Let $f(x)=\sin{x}$ and $a=\pi$. \end{hint} -\begin{hint} -Evaluate. - $f(a)=\answer{0}$, - $f'(x)=\cos{x}$, - $f'(a)=\answer{-1}$. -\end{hint} -\begin{hint} -Find an expression for $L(x)$, the linear approximation of $f$ at $a$. -\end{hint} -\begin{hint} - $L(x)=f(\pi)+f'(\pi)\cdot(\answer{x-\pi})$ -\end{hint} -\begin{hint} - $L(\pi+0.3)=-(\answer{0.3})$ -\end{hint} -\begin{hint} -Approximate. - $f(\pi+0.3)\approx L(\pi+0.3)$ -\end{hint} + \begin{prompt} $$\sin(\pi+0.3) \approx \answer{-0.3}$$ \end{prompt}