-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrijndael.c
1048 lines (937 loc) · 36.4 KB
/
rijndael.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
* \file lib/rijndael.c
*
* \brief rijndael - An implementation of the Rijndael cipher.
*/
/* Copyright (C) 2000, 2001 Rafael R. Sevilla <[email protected]>
*
* Currently maintained by brian d foy, <[email protected]>
*
* License (GNU General Public License):
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA
*
*****************************************************************************
*/
//#include "fko_common.h"
#include <ngx_core.h>
#include <ngx_md5.h>
#include "rijndael.h"
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
/* Other block sizes and key lengths are possible, but in the context of
* the ssh protocols, 256 bits is the default.
*/
//#define RIJNDAEL_BLOCKSIZE 16
#define RIJNDAEL_KEYSIZE 32
#define RIJNDAEL_MIN_KEYSIZE 16
#define RIJNDAEL_MAX_KEYSIZE 32
#define SALT_LEN 8
#define MODE_ECB 1 /* Are we ciphering in ECB mode? */
#define MODE_CBC 2 /* Are we ciphering in CBC mode? */
#define MODE_CFB 3 /* Are we ciphering in 128-bit CFB mode? */
#define MODE_PCBC 4 /* Are we ciphering in PCBC mode? */
#define MODE_OFB 5 /* Are we ciphering in 128-bit OFB mode? */
#define MODE_CTR 6 /* Are we ciphering in counter mode? */
/* Allow keys of size 128 <= bits <= 256 */
typedef struct {
uint32_t keys[60]; /* maximum size of key schedule */
uint32_t ikeys[60]; /* inverse key schedule */
int nrounds; /* number of rounds to use for our key size */
int mode; /* encryption mode */
/* Added by DSS */
uint8_t key[RIJNDAEL_MAX_KEYSIZE];
uint8_t iv[RIJNDAEL_BLOCKSIZE];
uint8_t salt[SALT_LEN];
} RIJNDAEL_context;
/**
* \brief initialize a Rijndael context with key
*
* This basically performs Rijndael's key scheduling algorithm, as it's the
* only initialization required anyhow. The key size is specified in bytes,
* but the only valid values are 16 (128 bits), 24 (192 bits), and 32 (256
* bits). If a value other than these three is specified, the key will be
* truncated to the closest value less than the key size specified, e.g.
* specifying 7 will use only the first 6 bytes of the key given. DO NOT
* PASS A VALUE LESS THAN 16 TO KEYSIZE!
*/
void
rijndael_setup(RIJNDAEL_context *ctx,
const size_t keysize, const uint8_t *key);
/*
* rijndael_encrypt()
*
* Encrypt 16 bytes of data with the Rijndael algorithm. Before this
* function can be used, rijndael_setup must be used in order to initialize
* Rijndael's key schedule.
*
* This function always encrypts 16 bytes of plaintext to 16 bytes of
* ciphertext. The memory areas of the plaintext and the ciphertext can
* overlap.
*/
void
rijndael_encrypt(RIJNDAEL_context *context,
const uint8_t *plaintext,
uint8_t *ciphertext);
/*
* rijndael_decrypt()
*
* Decrypt 16 bytes of data with the Rijndael algorithm.
*
* Before this function can be used, rijndael_setup() must be used in order
* to set up the key schedule required for the decryption algorithm.
*
* This function always decrypts 16 bytes of ciphertext to 16 bytes of
* plaintext. The memory areas of the plaintext and the ciphertext can
* overlap.
*/
void
rijndael_decrypt(RIJNDAEL_context *context,
const uint8_t *ciphertext,
uint8_t *plaintext);
/* Encrypt a block of plaintext in a mode specified in the context */
void
block_encrypt(RIJNDAEL_context *ctx, uint8_t *input, int inputlen,
uint8_t *output, uint8_t *iv);
/* Decrypt a block of plaintext in a mode specified in the context */
void
block_decrypt(RIJNDAEL_context *ctx, uint8_t *input, int inputlen,
uint8_t *output, uint8_t *iv);
/* These tables combine both the S-boxes and the mixcolumn transformation, so
that we can perform a round's encryption or by means of four table lookups
and four XOR's per column of state. They were generated by the
makertbls.pl script. */
uint32_t dtbl[] = {
0xa56363c6, 0x847c7cf8, 0x997777ee, 0x8d7b7bf6,
0x0df2f2ff, 0xbd6b6bd6, 0xb16f6fde, 0x54c5c591,
0x50303060, 0x03010102, 0xa96767ce, 0x7d2b2b56,
0x19fefee7, 0x62d7d7b5, 0xe6abab4d, 0x9a7676ec,
0x45caca8f, 0x9d82821f, 0x40c9c989, 0x877d7dfa,
0x15fafaef, 0xeb5959b2, 0xc947478e, 0x0bf0f0fb,
0xecadad41, 0x67d4d4b3, 0xfda2a25f, 0xeaafaf45,
0xbf9c9c23, 0xf7a4a453, 0x967272e4, 0x5bc0c09b,
0xc2b7b775, 0x1cfdfde1, 0xae93933d, 0x6a26264c,
0x5a36366c, 0x413f3f7e, 0x02f7f7f5, 0x4fcccc83,
0x5c343468, 0xf4a5a551, 0x34e5e5d1, 0x08f1f1f9,
0x937171e2, 0x73d8d8ab, 0x53313162, 0x3f15152a,
0x0c040408, 0x52c7c795, 0x65232346, 0x5ec3c39d,
0x28181830, 0xa1969637, 0x0f05050a, 0xb59a9a2f,
0x0907070e, 0x36121224, 0x9b80801b, 0x3de2e2df,
0x26ebebcd, 0x6927274e, 0xcdb2b27f, 0x9f7575ea,
0x1b090912, 0x9e83831d, 0x742c2c58, 0x2e1a1a34,
0x2d1b1b36, 0xb26e6edc, 0xee5a5ab4, 0xfba0a05b,
0xf65252a4, 0x4d3b3b76, 0x61d6d6b7, 0xceb3b37d,
0x7b292952, 0x3ee3e3dd, 0x712f2f5e, 0x97848413,
0xf55353a6, 0x68d1d1b9, 0x00000000, 0x2cededc1,
0x60202040, 0x1ffcfce3, 0xc8b1b179, 0xed5b5bb6,
0xbe6a6ad4, 0x46cbcb8d, 0xd9bebe67, 0x4b393972,
0xde4a4a94, 0xd44c4c98, 0xe85858b0, 0x4acfcf85,
0x6bd0d0bb, 0x2aefefc5, 0xe5aaaa4f, 0x16fbfbed,
0xc5434386, 0xd74d4d9a, 0x55333366, 0x94858511,
0xcf45458a, 0x10f9f9e9, 0x06020204, 0x817f7ffe,
0xf05050a0, 0x443c3c78, 0xba9f9f25, 0xe3a8a84b,
0xf35151a2, 0xfea3a35d, 0xc0404080, 0x8a8f8f05,
0xad92923f, 0xbc9d9d21, 0x48383870, 0x04f5f5f1,
0xdfbcbc63, 0xc1b6b677, 0x75dadaaf, 0x63212142,
0x30101020, 0x1affffe5, 0x0ef3f3fd, 0x6dd2d2bf,
0x4ccdcd81, 0x140c0c18, 0x35131326, 0x2fececc3,
0xe15f5fbe, 0xa2979735, 0xcc444488, 0x3917172e,
0x57c4c493, 0xf2a7a755, 0x827e7efc, 0x473d3d7a,
0xac6464c8, 0xe75d5dba, 0x2b191932, 0x957373e6,
0xa06060c0, 0x98818119, 0xd14f4f9e, 0x7fdcdca3,
0x66222244, 0x7e2a2a54, 0xab90903b, 0x8388880b,
0xca46468c, 0x29eeeec7, 0xd3b8b86b, 0x3c141428,
0x79dedea7, 0xe25e5ebc, 0x1d0b0b16, 0x76dbdbad,
0x3be0e0db, 0x56323264, 0x4e3a3a74, 0x1e0a0a14,
0xdb494992, 0x0a06060c, 0x6c242448, 0xe45c5cb8,
0x5dc2c29f, 0x6ed3d3bd, 0xefacac43, 0xa66262c4,
0xa8919139, 0xa4959531, 0x37e4e4d3, 0x8b7979f2,
0x32e7e7d5, 0x43c8c88b, 0x5937376e, 0xb76d6dda,
0x8c8d8d01, 0x64d5d5b1, 0xd24e4e9c, 0xe0a9a949,
0xb46c6cd8, 0xfa5656ac, 0x07f4f4f3, 0x25eaeacf,
0xaf6565ca, 0x8e7a7af4, 0xe9aeae47, 0x18080810,
0xd5baba6f, 0x887878f0, 0x6f25254a, 0x722e2e5c,
0x241c1c38, 0xf1a6a657, 0xc7b4b473, 0x51c6c697,
0x23e8e8cb, 0x7cdddda1, 0x9c7474e8, 0x211f1f3e,
0xdd4b4b96, 0xdcbdbd61, 0x868b8b0d, 0x858a8a0f,
0x907070e0, 0x423e3e7c, 0xc4b5b571, 0xaa6666cc,
0xd8484890, 0x05030306, 0x01f6f6f7, 0x120e0e1c,
0xa36161c2, 0x5f35356a, 0xf95757ae, 0xd0b9b969,
0x91868617, 0x58c1c199, 0x271d1d3a, 0xb99e9e27,
0x38e1e1d9, 0x13f8f8eb, 0xb398982b, 0x33111122,
0xbb6969d2, 0x70d9d9a9, 0x898e8e07, 0xa7949433,
0xb69b9b2d, 0x221e1e3c, 0x92878715, 0x20e9e9c9,
0x49cece87, 0xff5555aa, 0x78282850, 0x7adfdfa5,
0x8f8c8c03, 0xf8a1a159, 0x80898909, 0x170d0d1a,
0xdabfbf65, 0x31e6e6d7, 0xc6424284, 0xb86868d0,
0xc3414182, 0xb0999929, 0x772d2d5a, 0x110f0f1e,
0xcbb0b07b, 0xfc5454a8, 0xd6bbbb6d, 0x3a16162c,
};
uint32_t itbl[] = {
0x50a7f451, 0x5365417e, 0xc3a4171a, 0x965e273a,
0xcb6bab3b, 0xf1459d1f, 0xab58faac, 0x9303e34b,
0x55fa3020, 0xf66d76ad, 0x9176cc88, 0x254c02f5,
0xfcd7e54f, 0xd7cb2ac5, 0x80443526, 0x8fa362b5,
0x495ab1de, 0x671bba25, 0x980eea45, 0xe1c0fe5d,
0x02752fc3, 0x12f04c81, 0xa397468d, 0xc6f9d36b,
0xe75f8f03, 0x959c9215, 0xeb7a6dbf, 0xda595295,
0x2d83bed4, 0xd3217458, 0x2969e049, 0x44c8c98e,
0x6a89c275, 0x78798ef4, 0x6b3e5899, 0xdd71b927,
0xb64fe1be, 0x17ad88f0, 0x66ac20c9, 0xb43ace7d,
0x184adf63, 0x82311ae5, 0x60335197, 0x457f5362,
0xe07764b1, 0x84ae6bbb, 0x1ca081fe, 0x942b08f9,
0x58684870, 0x19fd458f, 0x876cde94, 0xb7f87b52,
0x23d373ab, 0xe2024b72, 0x578f1fe3, 0x2aab5566,
0x0728ebb2, 0x03c2b52f, 0x9a7bc586, 0xa50837d3,
0xf2872830, 0xb2a5bf23, 0xba6a0302, 0x5c8216ed,
0x2b1ccf8a, 0x92b479a7, 0xf0f207f3, 0xa1e2694e,
0xcdf4da65, 0xd5be0506, 0x1f6234d1, 0x8afea6c4,
0x9d532e34, 0xa055f3a2, 0x32e18a05, 0x75ebf6a4,
0x39ec830b, 0xaaef6040, 0x069f715e, 0x51106ebd,
0xf98a213e, 0x3d06dd96, 0xae053edd, 0x46bde64d,
0xb58d5491, 0x055dc471, 0x6fd40604, 0xff155060,
0x24fb9819, 0x97e9bdd6, 0xcc434089, 0x779ed967,
0xbd42e8b0, 0x888b8907, 0x385b19e7, 0xdbeec879,
0x470a7ca1, 0xe90f427c, 0xc91e84f8, 0x00000000,
0x83868009, 0x48ed2b32, 0xac70111e, 0x4e725a6c,
0xfbff0efd, 0x5638850f, 0x1ed5ae3d, 0x27392d36,
0x64d90f0a, 0x21a65c68, 0xd1545b9b, 0x3a2e3624,
0xb1670a0c, 0x0fe75793, 0xd296eeb4, 0x9e919b1b,
0x4fc5c080, 0xa220dc61, 0x694b775a, 0x161a121c,
0x0aba93e2, 0xe52aa0c0, 0x43e0223c, 0x1d171b12,
0x0b0d090e, 0xadc78bf2, 0xb9a8b62d, 0xc8a91e14,
0x8519f157, 0x4c0775af, 0xbbdd99ee, 0xfd607fa3,
0x9f2601f7, 0xbcf5725c, 0xc53b6644, 0x347efb5b,
0x7629438b, 0xdcc623cb, 0x68fcedb6, 0x63f1e4b8,
0xcadc31d7, 0x10856342, 0x40229713, 0x2011c684,
0x7d244a85, 0xf83dbbd2, 0x1132f9ae, 0x6da129c7,
0x4b2f9e1d, 0xf330b2dc, 0xec52860d, 0xd0e3c177,
0x6c16b32b, 0x99b970a9, 0xfa489411, 0x2264e947,
0xc48cfca8, 0x1a3ff0a0, 0xd82c7d56, 0xef903322,
0xc74e4987, 0xc1d138d9, 0xfea2ca8c, 0x360bd498,
0xcf81f5a6, 0x28de7aa5, 0x268eb7da, 0xa4bfad3f,
0xe49d3a2c, 0x0d927850, 0x9bcc5f6a, 0x62467e54,
0xc2138df6, 0xe8b8d890, 0x5ef7392e, 0xf5afc382,
0xbe805d9f, 0x7c93d069, 0xa92dd56f, 0xb31225cf,
0x3b99acc8, 0xa77d1810, 0x6e639ce8, 0x7bbb3bdb,
0x097826cd, 0xf418596e, 0x01b79aec, 0xa89a4f83,
0x656e95e6, 0x7ee6ffaa, 0x08cfbc21, 0xe6e815ef,
0xd99be7ba, 0xce366f4a, 0xd4099fea, 0xd67cb029,
0xafb2a431, 0x31233f2a, 0x3094a5c6, 0xc066a235,
0x37bc4e74, 0xa6ca82fc, 0xb0d090e0, 0x15d8a733,
0x4a9804f1, 0xf7daec41, 0x0e50cd7f, 0x2ff69117,
0x8dd64d76, 0x4db0ef43, 0x544daacc, 0xdf0496e4,
0xe3b5d19e, 0x1b886a4c, 0xb81f2cc1, 0x7f516546,
0x04ea5e9d, 0x5d358c01, 0x737487fa, 0x2e410bfb,
0x5a1d67b3, 0x52d2db92, 0x335610e9, 0x1347d66d,
0x8c61d79a, 0x7a0ca137, 0x8e14f859, 0x893c13eb,
0xee27a9ce, 0x35c961b7, 0xede51ce1, 0x3cb1477a,
0x59dfd29c, 0x3f73f255, 0x79ce1418, 0xbf37c773,
0xeacdf753, 0x5baafd5f, 0x146f3ddf, 0x86db4478,
0x81f3afca, 0x3ec468b9, 0x2c342438, 0x5f40a3c2,
0x72c31d16, 0x0c25e2bc, 0x8b493c28, 0x41950dff,
0x7101a839, 0xdeb30c08, 0x9ce4b4d8, 0x90c15664,
0x6184cb7b, 0x70b632d5, 0x745c6c48, 0x4257b8d0,
};
/* Needed only for the key schedule and for final rounds */
uint8_t sbox[256] = {
99, 124, 119, 123, 242, 107, 111, 197, 48, 1, 103, 43, 254, 215, 171,
118, 202, 130, 201, 125, 250, 89, 71, 240, 173, 212, 162, 175, 156, 164,
114, 192, 183, 253, 147, 38, 54, 63, 247, 204, 52, 165, 229, 241, 113,
216, 49, 21, 4, 199, 35, 195, 24, 150, 5, 154, 7, 18, 128, 226,
235, 39, 178, 117, 9, 131, 44, 26, 27, 110, 90, 160, 82, 59, 214,
179, 41, 227, 47, 132, 83, 209, 0, 237, 32, 252, 177, 91, 106, 203,
190, 57, 74, 76, 88, 207, 208, 239, 170, 251, 67, 77, 51, 133, 69,
249, 2, 127, 80, 60, 159, 168, 81, 163, 64, 143, 146, 157, 56, 245,
188, 182, 218, 33, 16, 255, 243, 210, 205, 12, 19, 236, 95, 151, 68,
23, 196, 167, 126, 61, 100, 93, 25, 115, 96, 129, 79, 220, 34, 42,
144, 136, 70, 238, 184, 20, 222, 94, 11, 219, 224, 50, 58, 10, 73,
6, 36, 92, 194, 211, 172, 98, 145, 149, 228, 121, 231, 200, 55, 109,
141, 213, 78, 169, 108, 86, 244, 234, 101, 122, 174, 8, 186, 120, 37,
46, 28, 166, 180, 198, 232, 221, 116, 31, 75, 189, 139, 138, 112, 62,
181, 102, 72, 3, 246, 14, 97, 53, 87, 185, 134, 193, 29, 158, 225,
248, 152, 17, 105, 217, 142, 148, 155, 30, 135, 233, 206, 85, 40, 223,
140, 161, 137, 13, 191, 230, 66, 104, 65, 153, 45, 15, 176, 84, 187,
22,
};
uint8_t isbox[256] = {
82, 9, 106, 213, 48, 54, 165, 56, 191, 64, 163, 158, 129, 243, 215,
251, 124, 227, 57, 130, 155, 47, 255, 135, 52, 142, 67, 68, 196, 222,
233, 203, 84, 123, 148, 50, 166, 194, 35, 61, 238, 76, 149, 11, 66,
250, 195, 78, 8, 46, 161, 102, 40, 217, 36, 178, 118, 91, 162, 73,
109, 139, 209, 37, 114, 248, 246, 100, 134, 104, 152, 22, 212, 164, 92,
204, 93, 101, 182, 146, 108, 112, 72, 80, 253, 237, 185, 218, 94, 21,
70, 87, 167, 141, 157, 132, 144, 216, 171, 0, 140, 188, 211, 10, 247,
228, 88, 5, 184, 179, 69, 6, 208, 44, 30, 143, 202, 63, 15, 2,
193, 175, 189, 3, 1, 19, 138, 107, 58, 145, 17, 65, 79, 103, 220,
234, 151, 242, 207, 206, 240, 180, 230, 115, 150, 172, 116, 34, 231, 173,
53, 133, 226, 249, 55, 232, 28, 117, 223, 110, 71, 241, 26, 113, 29,
41, 197, 137, 111, 183, 98, 14, 170, 24, 190, 27, 252, 86, 62, 75,
198, 210, 121, 32, 154, 219, 192, 254, 120, 205, 90, 244, 31, 221, 168,
51, 136, 7, 199, 49, 177, 18, 16, 89, 39, 128, 236, 95, 96, 81,
127, 169, 25, 181, 74, 13, 45, 229, 122, 159, 147, 201, 156, 239, 160,
224, 59, 77, 174, 42, 245, 176, 200, 235, 187, 60, 131, 83, 153, 97,
23, 43, 4, 126, 186, 119, 214, 38, 225, 105, 20, 99, 85, 33, 12,
125,
};
/* Used only by the key schedule */
uint8_t Logtable[256] = {
0, 0, 25, 1, 50, 2, 26, 198, 75, 199, 27, 104, 51, 238, 223, 3,
100, 4, 224, 14, 52, 141, 129, 239, 76, 113, 8, 200, 248, 105, 28,
193, 125, 194, 29, 181, 249, 185, 39, 106, 77, 228, 166, 114, 154, 201,
9, 120, 101, 47, 138, 5, 33, 15, 225, 36, 18, 240, 130, 69, 53,
147, 218, 142, 150, 143, 219, 189, 54, 208, 206, 148, 19, 92, 210, 241,
64, 70, 131, 56, 102, 221, 253, 48, 191, 6, 139, 98, 179, 37, 226,
152, 34, 136, 145, 16, 126, 110, 72, 195, 163, 182, 30, 66, 58, 107,
40, 84, 250, 133, 61, 186, 43, 121, 10, 21, 155, 159, 94, 202, 78,
212, 172, 229, 243, 115, 167, 87, 175, 88, 168, 80, 244, 234, 214, 116,
79, 174, 233, 213, 231, 230, 173, 232, 44, 215, 117, 122, 235, 22, 11,
245, 89, 203, 95, 176, 156, 169, 81, 160, 127, 12, 246, 111, 23, 196,
73, 236, 216, 67, 31, 45, 164, 118, 123, 183, 204, 187, 62, 90, 251,
96, 177, 134, 59, 82, 161, 108, 170, 85, 41, 157, 151, 178, 135, 144,
97, 190, 220, 252, 188, 149, 207, 205, 55, 63, 91, 209, 83, 57, 132,
60, 65, 162, 109, 71, 20, 42, 158, 93, 86, 242, 211, 171, 68, 17,
146, 217, 35, 32, 46, 137, 180, 124, 184, 38, 119, 153, 227, 165, 103,
74, 237, 222, 197, 49, 254, 24, 13, 99, 140, 128, 192, 247, 112, 7,
};
uint8_t Alogtable[256] = {
1, 3, 5, 15, 17, 51, 85, 255, 26, 46, 114, 150, 161, 248, 19,
53, 95, 225, 56, 72, 216, 115, 149, 164, 247, 2, 6, 10, 30, 34,
102, 170, 229, 52, 92, 228, 55, 89, 235, 38, 106, 190, 217, 112, 144,
171, 230, 49, 83, 245, 4, 12, 20, 60, 68, 204, 79, 209, 104, 184,
211, 110, 178, 205, 76, 212, 103, 169, 224, 59, 77, 215, 98, 166, 241,
8, 24, 40, 120, 136, 131, 158, 185, 208, 107, 189, 220, 127, 129, 152,
179, 206, 73, 219, 118, 154, 181, 196, 87, 249, 16, 48, 80, 240, 11,
29, 39, 105, 187, 214, 97, 163, 254, 25, 43, 125, 135, 146, 173, 236,
47, 113, 147, 174, 233, 32, 96, 160, 251, 22, 58, 78, 210, 109, 183,
194, 93, 231, 50, 86, 250, 21, 63, 65, 195, 94, 226, 61, 71, 201,
64, 192, 91, 237, 44, 116, 156, 191, 218, 117, 159, 186, 213, 100, 172,
239, 42, 126, 130, 157, 188, 223, 122, 142, 137, 128, 155, 182, 193, 88,
232, 35, 101, 175, 234, 37, 111, 177, 200, 67, 197, 84, 252, 31, 33,
99, 165, 244, 7, 9, 27, 45, 119, 153, 176, 203, 70, 202, 69, 207,
74, 222, 121, 139, 134, 145, 168, 227, 62, 66, 198, 81, 243, 14, 18,
54, 90, 238, 41, 123, 141, 140, 143, 138, 133, 148, 167, 242, 13, 23,
57, 75, 221, 124, 132, 151, 162, 253, 28, 36, 108, 180, 199, 82, 246, 1,
};
#define ROTBYTE(x) (((x) >> 8) | (((x) & 0xff) << 24))
#define ROTRBYTE(x) (((x) << 8) | (((x) >> 24) & 0xff))
#define SUBBYTE(x, box) (((box)[((x) & 0xff)]) | \
((box)[(((x) >> 8) & 0xff)] << 8) | \
((box)[(((x) >> 16) & 0xff)] << 16) | \
((box)[(((x) >> 24) & 0xff)] << 24))
static uint8_t
xtime(uint8_t a)
{
uint8_t b;
b = (a & 0x80) ? 0x1b : 0;
a<<=1;
a^=b;
return(a);
}
static uint8_t
mul(uint8_t a, uint8_t b)
{
if (a && b) return Alogtable[(Logtable[a] + Logtable[b])%255];
else return 0;
}
static void
inv_mix_column(uint32_t *a, uint32_t *b)
{
uint8_t c[4][4];
int i, j;
for(j = 0; j < 4; j++) {
for(i = 0; i < 4; i++) {
c[j][i] = mul(0xe, (a[j] >> i*8) & 0xff)
^ mul(0xb, (a[j] >> ((i+1)%4)*8) & 0xff)
^ mul(0xd, (a[j] >> ((i+2)%4)*8) & 0xff)
^ mul(0x9, (a[j] >> ((i+3)%4)*8) & 0xff);
}
}
for(i = 0; i < 4; i++) {
b[i] = 0;
for(j = 0; j < 4; j++)
b[i] |= c[i][j] << (j*8);
}
}
void
rijndael_setup(RIJNDAEL_context *ctx, const size_t keysize, const uint8_t *key)
{
int nk, nr, i, lastkey;
uint32_t temp, rcon;
/* Truncate keysizes to the valid key sizes provided by Rijndael */
if (keysize >= RIJNDAEL_MAX_KEYSIZE) {
nk = 8;
nr = 14;
} else if (keysize >= 24) {
nk = 6;
nr = 12;
} else { /* must be 16 or more */
nk = 4;
nr = 10;
}
lastkey = (RIJNDAEL_BLOCKSIZE/4) * (nr + 1);
ctx->nrounds = nr;
rcon = 1;
for (i=0; i<nk; i++) {
ctx->keys[i] = key[i*4] + (key[i*4+1]<<8) + (key[i*4+2]<<16) +
(key[i*4+3]<<24);
}
for (i=nk; i<lastkey; i++) {
temp = ctx->keys[i-1];
if (i % nk == 0) {
temp = SUBBYTE(ROTBYTE(temp), sbox) ^ rcon;
rcon = (uint32_t)xtime((uint8_t)rcon&0xff);
} else if (nk > 6 && (i%nk) == 4) {
temp = SUBBYTE(temp, sbox);
}
ctx->keys[i] = ctx->keys[i-nk] ^ temp;
}
/* Generate the inverse keys */
for (i=0; i<4; i++) {
ctx->ikeys[i] = ctx->keys[i];
ctx->ikeys[lastkey-4 + i] = ctx->keys[lastkey-4 + i];
}
for (i=4; i<lastkey-4; i+=4)
inv_mix_column(&(ctx->keys[i]), &(ctx->ikeys[i]));
}
/* Key addition that also packs every byte in the key to a word rep. */
static void
key_addition_8to32(const uint8_t *txt, uint32_t *keys, uint32_t *out)
{
const uint8_t *ptr;
int i, j;
uint32_t val;
ptr = txt;
for (i=0; i<4; i++) {
val = 0;
for (j=0; j<4; j++)
val |= (*ptr++ << 8*j);
out[i] = keys[i]^val;
}
}
static void
key_addition32(const uint32_t *txt, uint32_t *keys, uint32_t *out)
{
int i;
for (i=0; i<4; i++)
out[i] = keys[i] ^ txt[i];
}
static void
key_addition32to8(const uint32_t *txt, uint32_t *keys, uint8_t *out)
{
uint8_t *ptr;
int i, j;
uint32_t val;
ptr = out;
for (i=0; i<4; i++) {
val = txt[i] ^ keys[i];
for (j=0; j<4; j++)
*ptr++ = (val >> 8*j) & 0xff;
}
}
static int idx[4][4] = {
{ 0, 1, 2, 3 },
{ 1, 2, 3, 0 },
{ 2, 3, 0, 1 },
{ 3, 0, 1, 2 } };
void
rijndael_encrypt(RIJNDAEL_context *ctx,
const uint8_t *plaintext,
uint8_t *ciphertext)
{
int r, j;
uint32_t wtxt[4], t[4]; /* working ciphertext */
uint32_t e;
key_addition_8to32(plaintext, &(ctx->keys[0]), wtxt);
for (r=1; r<ctx->nrounds; r++) {
for (j=0; j<4; j++) {
t[j] = dtbl[wtxt[j] & 0xff] ^
ROTRBYTE(dtbl[(wtxt[idx[1][j]] >> 8) & 0xff]^
ROTRBYTE(dtbl[(wtxt[idx[2][j]] >> 16) & 0xff] ^
ROTRBYTE(dtbl[(wtxt[idx[3][j]] >> 24) & 0xff])));
}
key_addition32(t, &(ctx->keys[r*4]), wtxt);
}
/* last round is special: there is no mixcolumn, so we can't use the big
tables. */
for (j=0; j<4; j++) {
e = wtxt[j] & 0xff;
e |= (wtxt[idx[1][j]]) & (0xff << 8 );
e |= (wtxt[idx[2][j]]) & (0xff << 16);
e |= (wtxt[idx[3][j]]) & (0xffU << 24);
t[j] = e;
}
for (j=0; j<4; j++)
t[j] = SUBBYTE(t[j], sbox);
key_addition32to8(t, &(ctx->keys[4*ctx->nrounds]), ciphertext);
}
static int iidx[4][4] = {
{ 0, 1, 2, 3 },
{ 3, 0, 1, 2 },
{ 2, 3, 0, 1 },
{ 1, 2, 3, 0 } };
void
rijndael_decrypt(RIJNDAEL_context *ctx,
const uint8_t *ciphertext,
uint8_t *plaintext)
{
int r, j;
uint32_t wtxt[4], t[4]; /* working ciphertext */
uint32_t e;
key_addition_8to32(ciphertext, &(ctx->ikeys[4*ctx->nrounds]), wtxt);
for (r=ctx->nrounds-1; r> 0; r--) {
for (j=0; j<4; j++) {
t[j] = itbl[wtxt[j] & 0xff] ^
ROTRBYTE(itbl[(wtxt[iidx[1][j]] >> 8) & 0xff]^
ROTRBYTE(itbl[(wtxt[iidx[2][j]] >> 16) & 0xff] ^
ROTRBYTE(itbl[(wtxt[iidx[3][j]] >> 24) & 0xff])));
}
key_addition32(t, &(ctx->ikeys[r*4]), wtxt);
}
/* last round is special: there is no mixcolumn, so we can't use the big
tables. */
for (j=0; j<4; j++) {
e = wtxt[j] & 0xff;
e |= (wtxt[iidx[1][j]]) & (0xff << 8);
e |= (wtxt[iidx[2][j]]) & (0xff << 16);
e |= (wtxt[iidx[3][j]]) & (0xffU << 24);
t[j] = e;
}
for (j=0; j<4; j++)
t[j] = SUBBYTE(t[j], isbox);
key_addition32to8(t, &(ctx->ikeys[0]), plaintext);
}
void
block_encrypt(RIJNDAEL_context *ctx, uint8_t *input, int inputlen,
uint8_t *output, uint8_t *iv)
{
int i, j, nblocks, carry_flg;
uint8_t block[RIJNDAEL_BLOCKSIZE], block2[RIJNDAEL_BLOCKSIZE];//, oldptxt;
nblocks = inputlen / RIJNDAEL_BLOCKSIZE;
switch (ctx->mode) {
case MODE_ECB: /* electronic code book */
for (i = 0; i<nblocks; i++) {
rijndael_encrypt(ctx, &input[RIJNDAEL_BLOCKSIZE*i],
&output[RIJNDAEL_BLOCKSIZE*i]);
}
break;
case MODE_CBC: /* Cipher block chaining */
/* set initial value */
memcpy(block, iv, RIJNDAEL_BLOCKSIZE);
for (i=0; i< nblocks; i++) {
for (j=0; j<RIJNDAEL_BLOCKSIZE; j++)
block[j] ^= input[i*RIJNDAEL_BLOCKSIZE + j] & 0xff;
rijndael_encrypt(ctx, block, block);
memcpy(&output[RIJNDAEL_BLOCKSIZE*i], block, RIJNDAEL_BLOCKSIZE);
}
break;
case MODE_CFB: /* 128-bit cipher feedback */
memcpy(block, iv, RIJNDAEL_BLOCKSIZE);
for (i=0; i<nblocks; i++) {
rijndael_encrypt(ctx, block, block);
for (j=0; j<RIJNDAEL_BLOCKSIZE; j++)
block[j] ^= input[i*RIJNDAEL_BLOCKSIZE + j];
memcpy(&output[RIJNDAEL_BLOCKSIZE*i], block, RIJNDAEL_BLOCKSIZE);
}
break;
case MODE_OFB: /* 128-bit output feedback */
memcpy(block, iv, RIJNDAEL_BLOCKSIZE);
for (i=0; i<nblocks; i++) {
rijndael_encrypt(ctx, block, block);
for (j=0; j<RIJNDAEL_BLOCKSIZE; j++) {
output[RIJNDAEL_BLOCKSIZE*i + j] = block[j] ^
input[RIJNDAEL_BLOCKSIZE*i + j];
}
}
break;
case MODE_CTR: /* counter */
memcpy(block, iv, RIJNDAEL_BLOCKSIZE);
for (i=0; i<nblocks; i++) {
rijndael_encrypt(ctx, block, block2);
for (j=0; j<RIJNDAEL_BLOCKSIZE; j++) {
output[RIJNDAEL_BLOCKSIZE*i + j] = block2[j] ^
input[RIJNDAEL_BLOCKSIZE*i + j];
}
block[RIJNDAEL_BLOCKSIZE-1]++;
carry_flg = block[RIJNDAEL_BLOCKSIZE-1] != 0 ? 0 : 1;
for (j=RIJNDAEL_BLOCKSIZE-2; j>=0; j--) {
if (carry_flg) {
block[j]++;
carry_flg = block[j] != 0 ? 0 : 1;
} else
break;
}
}
break;
default:
break;
}
}
void
block_decrypt(RIJNDAEL_context *ctx, uint8_t *input, int inputlen,
uint8_t *output, uint8_t *iv)
{
int i, j, nblocks, carry_flg;
uint8_t block[RIJNDAEL_BLOCKSIZE], block2[RIJNDAEL_BLOCKSIZE];
nblocks = inputlen / RIJNDAEL_BLOCKSIZE;
switch (ctx->mode) {
case MODE_ECB:
for (i = 0; i<nblocks; i++) {
rijndael_decrypt(ctx, &input[RIJNDAEL_BLOCKSIZE*i],
&output[RIJNDAEL_BLOCKSIZE*i]);
}
break;
case MODE_CBC:
/* first block */
rijndael_decrypt(ctx, input, block);
/* XOR the block with the IV to get the output */
for (i=0; i<RIJNDAEL_BLOCKSIZE; i++)
output[i] = block[i] ^ iv[i];
for (i=1; i<nblocks; i++) {
rijndael_decrypt(ctx, &input[i*RIJNDAEL_BLOCKSIZE], block);
for (j=0; j<RIJNDAEL_BLOCKSIZE; j++) {
output[i*RIJNDAEL_BLOCKSIZE + j] = block[j] ^
input[(i-1)*RIJNDAEL_BLOCKSIZE + j];
}
}
break;
case MODE_CFB: /* 128-bit cipher feedback */
memcpy(block, iv, RIJNDAEL_BLOCKSIZE);
for (i=0; i<nblocks; i++) {
rijndael_encrypt(ctx, block, block); /* ENCRYPT is right! */
for (j=0; j<RIJNDAEL_BLOCKSIZE; j++) {
output[RIJNDAEL_BLOCKSIZE*i + j] = block[j] ^
input[RIJNDAEL_BLOCKSIZE*i + j];
}
memcpy(block, &input[RIJNDAEL_BLOCKSIZE*i], RIJNDAEL_BLOCKSIZE);
}
break;
case MODE_OFB: /* 128-bit output feedback */
/* this is exactly the same as encryption in OFB...in fact you can use
the encryption in OFB mode to decrypt! */
memcpy(block, iv, RIJNDAEL_BLOCKSIZE);
for (i=0; i<nblocks; i++) {
rijndael_encrypt(ctx, block, block);
for (j=0; j<RIJNDAEL_BLOCKSIZE; j++) {
output[RIJNDAEL_BLOCKSIZE*i + j] = block[j] ^
input[RIJNDAEL_BLOCKSIZE*i + j];
}
}
break;
case MODE_CTR: /* counter */
memcpy(block, iv, RIJNDAEL_BLOCKSIZE);
for (i=0; i<nblocks; i++) {
rijndael_encrypt(ctx, block, block2);
for (j=0; j<RIJNDAEL_BLOCKSIZE; j++) {
output[RIJNDAEL_BLOCKSIZE*i + j] = block2[j] ^
input[RIJNDAEL_BLOCKSIZE*i + j];
}
block[RIJNDAEL_BLOCKSIZE-1]++;
carry_flg = block[RIJNDAEL_BLOCKSIZE-1] != 0 ? 0 : 1;
for (j=RIJNDAEL_BLOCKSIZE-2; j>=0; j--) {
if (carry_flg) {
block[j]++;
carry_flg = block[j] != 0 ? 0 : 1;
} else
break;
}
}
break;
default:
break;
}
}
//-------------------------------------------------------------------
/* Get random data.
*/
void
get_random_data(unsigned char *data, const size_t len)
{
uint32_t i;
#ifdef WIN32
int rnum;
struct _timeb tb;
_ftime_s(&tb);
srand((uint32_t)(tb.time*1000)+tb.millitm);
for(i=0; i<len; i++)
{
rnum = rand();
*(data+i) = rnum % 0xff;
}
#else
//FILE *rfd;
struct timeval tv;
int do_time = 1;
//size_t amt_read;
/* Attempt to read seed data from /dev/urandom. If that does not
* work, then fall back to a time-based method (less secure, but
* probably more portable).
*/
// if((rfd = fopen(RAND_FILE, "r")) == NULL)
// {
// do_time = 1;
// }
// else
// {
// /* Read seed from /dev/urandom
// */
// amt_read = fread(data, len, 1, rfd);
// fclose(rfd);
// if (amt_read != 1)
// do_time = 1;
// }
if (do_time)
{
/* Seed based on time (current usecs).
*/
gettimeofday(&tv, NULL);
srand(tv.tv_usec);
for(i=0; i<len; i++)
*(data+i) = rand() % 0xff;
}
#endif
}
/* Compute MD5 hash on in and store result in out.
*/
void
md5(unsigned char *out, unsigned char *in, size_t size)
{
//MD5Context ctx;
ngx_md5_t md5;
//MD5Init(&ctx);
ngx_md5_init(&md5);
//MD5Update(&ctx, (unsigned char*)in, size);
ngx_md5_update(&md5, in, size);
//MD5Final(out, &ctx);
ngx_md5_final(out, &md5);
}
#define MAX_SPA_ENCODED_MSG_SIZE 1500
/* zero out sensitive information in a way that isn't optimized out by the compiler
* since we force a comparison and return an error if there is a problem (though
* the caller should do something with this information too).
*/
int
zero_buf(char *buf, int len)
{
int i, res = 0;
#if HAVE_LIBFIU
fiu_return_on("zero_buf_err", FKO_ERROR_ZERO_OUT_DATA);
#endif
if(buf == NULL || len == 0)
return res;
if(len < 0 || len > MAX_SPA_ENCODED_MSG_SIZE)
return -1;
for(i=0; i < len; i++)
buf[i] = 0x0;
for(i=0; i < len; i++)
if(buf[i] != 0x0)
res = -1;
return res;
}
/*** These are Rijndael-specific functions ***/
/* Rijndael function to generate initial salt and initialization vector
* (iv). This is is done to be compatible with the data produced via OpenSSL
*/
#define MD5_DIGEST_LEN 16
#define FKO_ENC_MODE_CBC_LEGACY_IV 8
static void
rij_salt_and_iv(RIJNDAEL_context *ctx, const char *key,
const int key_len, const unsigned char *data, const int mode_flag)
{
char pw_buf[RIJNDAEL_MAX_KEYSIZE] = {0};
unsigned char tmp_buf[MD5_DIGEST_LEN+RIJNDAEL_MAX_KEYSIZE+RIJNDAEL_BLOCKSIZE] = {0};
unsigned char kiv_buf[RIJNDAEL_MAX_KEYSIZE+RIJNDAEL_BLOCKSIZE] = {0}; /* Key and IV buffer */
unsigned char md5_buf[MD5_DIGEST_LEN] = {0}; /* Buffer for computed md5 hash */
int final_key_len = 0;
size_t kiv_len = 0;
if(mode_flag == FKO_ENC_MODE_CBC_LEGACY_IV)
{
/* Pad the pw with '0' chars up to the minimum Rijndael key size.
*
* This maintains compatibility with the old perl code if absolutely
* necessary in some scenarios, but is not recommended to use since it
* breaks compatibility with how OpenSSL implements AES and introduces
* other problems. This code will be removed altogether in a future
* version of fwknop.
*/
if(key_len < RIJNDAEL_MIN_KEYSIZE)
{
memcpy(pw_buf, key, key_len);
memset(pw_buf+key_len, '0', RIJNDAEL_MIN_KEYSIZE - key_len);
final_key_len = RIJNDAEL_MIN_KEYSIZE;
}
else
{
memcpy(pw_buf, key, key_len);
final_key_len = key_len;
}
}
else
{
memcpy(pw_buf, key, key_len);
final_key_len = key_len;
}
/* If we are decrypting, data will contain the salt. Otherwise,
* for encryption, we generate a random salt.
*/
if(data != NULL)
{
/* Pull the salt from the data
*/
memcpy(ctx->salt, (data+SALT_LEN), SALT_LEN);
}
else
{
/* Generate a random 8-byte salt.
*/
get_random_data(ctx->salt, SALT_LEN);
}
/* Now generate the key and initialization vector.
* (again it is the perl Crypt::CBC way, with a touch of
* fwknop).
*/
memcpy(tmp_buf+MD5_DIGEST_LEN, pw_buf, final_key_len);
memcpy(tmp_buf+MD5_DIGEST_LEN+final_key_len, ctx->salt, SALT_LEN);
while(kiv_len < sizeof(kiv_buf))
{
if(kiv_len == 0)
md5(md5_buf, tmp_buf+MD5_DIGEST_LEN, final_key_len+SALT_LEN);
else
md5(md5_buf, tmp_buf, MD5_DIGEST_LEN+final_key_len+SALT_LEN);
memcpy(tmp_buf, md5_buf, MD5_DIGEST_LEN);
memcpy(kiv_buf + kiv_len, md5_buf, MD5_DIGEST_LEN);
kiv_len += MD5_DIGEST_LEN;
}
memcpy(ctx->key, kiv_buf, RIJNDAEL_MAX_KEYSIZE);
memcpy(ctx->iv, kiv_buf+RIJNDAEL_MAX_KEYSIZE, RIJNDAEL_BLOCKSIZE);
}
/* Initialization entry point.
*/
static void
rijndael_init(RIJNDAEL_context *ctx, const char *key,
const int key_len, const unsigned char *data,
int encryption_mode)
{
/* The default is Rijndael in CBC mode
*/
// if(encryption_mode == FKO_ENC_MODE_CBC
// || encryption_mode == FKO_ENC_MODE_CBC_LEGACY_IV)
// ctx->mode = MODE_CBC;
// else if(encryption_mode == FKO_ENC_MODE_CTR)
// ctx->mode = MODE_CTR;
// else if(encryption_mode == FKO_ENC_MODE_PCBC)
// ctx->mode = MODE_PCBC;
// else if(encryption_mode == FKO_ENC_MODE_OFB)
// ctx->mode = MODE_OFB;
// else if(encryption_mode == FKO_ENC_MODE_CFB)
// ctx->mode = MODE_CFB;
// else if(encryption_mode == FKO_ENC_MODE_ECB)
// ctx->mode = MODE_ECB;
// else /* shouldn't get this far */
ctx->mode = encryption_mode;
/* Generate the salt and initialization vector.
*/
rij_salt_and_iv(ctx, key, key_len, data, encryption_mode);
/* Intialize our Rijndael context.
*/
rijndael_setup(ctx, RIJNDAEL_MAX_KEYSIZE, ctx->key);
}
/* Take a chunk of data, encrypt it in the same way OpenSSL would
* (with a default of AES in CBC mode).
*/
size_t
rij_encrypt(unsigned char *in, size_t in_len,
ngx_str_t* keyb64,
unsigned char *out, ngx_pool_t* pool)
{
RIJNDAEL_context ctx;
int i, pad_val;
unsigned char *ondx = out;
ngx_str_t key32;
key32.len = ngx_base64_decoded_length(keyb64->len);
key32.data = ngx_pnalloc(pool, key32.len + 1);
ngx_decode_base64(&key32, keyb64);
const char* key = (char*)key32.data;
const int key_len = key32.len;
rijndael_init(&ctx, key, key_len, NULL, MODE_CBC);
/* Prepend the salt to the ciphertext...
*/
memcpy(ondx, "Salted__", SALT_LEN);
ondx+=SALT_LEN;
memcpy(ondx, ctx.salt, SALT_LEN);
ondx+=SALT_LEN;
/* Add padding to the original plaintext to ensure that it is a
* multiple of the Rijndael block size
*/
pad_val = RIJNDAEL_BLOCKSIZE - (in_len % RIJNDAEL_BLOCKSIZE);
for (i = (int)in_len; i < ((int)in_len+pad_val); i++)
in[i] = pad_val;
block_encrypt(&ctx, in, in_len+pad_val, ondx, ctx.iv);
ondx += in_len+pad_val;
zero_buf((char *)ctx.key, RIJNDAEL_MAX_KEYSIZE);
zero_buf((char *)ctx.iv, RIJNDAEL_BLOCKSIZE);
zero_buf((char *)ctx.salt, SALT_LEN);
return(ondx - out);
}
/* Decrypt the given data.
*/
size_t
rij_decrypt(unsigned char *in, size_t in_len,
ngx_str_t* keyb64,
unsigned char *out, ngx_pool_t* pool)
{
RIJNDAEL_context ctx;
int i, pad_val, pad_err = 0;
unsigned char *pad_s;
unsigned char *ondx = out;
if(in == NULL || keyb64 == NULL || out == NULL)
return 0;
ngx_str_t key32;
key32.len = ngx_base64_decoded_length(keyb64->len);