-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_set_seg.py
56 lines (45 loc) · 2.22 KB
/
data_set_seg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import os
import random
import shutil
# 设置VOC数据集路径(图片和标签的文件夹)
voc_images_dir = '/home/ubuntu/gc(voc)/img' # 图片的文件夹路径
voc_annotations_dir = '/home/ubuntu/gc(voc)/lable' # 标签的文件夹路径
# 设置输出的训练集和验证集路径
train_images_dir = '/home/ubuntu/gc_modify/train/images'
train_annotations_dir = '/home/ubuntu/gc_modify/train/annotations'
val_images_dir = '/home/ubuntu/gc_modify/val/images'
val_annotations_dir = '/home/ubuntu/gc_modify/val/annotations'
# 创建输出文件夹,确保创建的是目录而不是文件
os.makedirs(train_images_dir, exist_ok=True)
os.makedirs(train_annotations_dir, exist_ok=True)
os.makedirs(val_images_dir, exist_ok=True)
os.makedirs(val_annotations_dir, exist_ok=True)
# 获取所有图片文件的文件名(不含扩展名)
image_files = [f.split('.')[0] for f in os.listdir(voc_images_dir) if f.endswith('.jpg')]
# 随机打乱图片文件列表
random.shuffle(image_files)
# 按7:3的比例划分为训练集和验证集
split_index = int(len(image_files) * 0.7)
train_files = image_files[:split_index]
val_files = image_files[split_index:]
# 复制文件到训练集目录
for file in train_files:
# 复制图片
src_image_path = os.path.join(voc_images_dir, file + '.jpg')
dest_image_path = os.path.join(train_images_dir, file + '.jpg')
shutil.copyfile(src_image_path, dest_image_path)
# 复制对应的标签(XML)
src_annotation_path = os.path.join(voc_annotations_dir, file + '.xml')
dest_annotation_path = os.path.join(train_annotations_dir, file + '.xml')
shutil.copyfile(src_annotation_path, dest_annotation_path)
# 复制文件到验证集目录
for file in val_files:
# 复制图片
src_image_path = os.path.join(voc_images_dir, file + '.jpg')
dest_image_path = os.path.join(val_images_dir, file + '.jpg')
shutil.copyfile(src_image_path, dest_image_path)
# 复制对应的标签(XML)
src_annotation_path = os.path.join(voc_annotations_dir, file + '.xml')
dest_annotation_path = os.path.join(val_annotations_dir, file + '.xml')
shutil.copyfile(src_annotation_path, dest_annotation_path)
print("数据集划分完成,训练集和验证集已生成。")