|
| 1 | +#import libraries |
| 2 | +import numpy |
| 3 | +import pandas |
| 4 | +from keras.models import Sequential |
| 5 | +from keras.layers import Dense |
| 6 | +from keras.wrappers.scikit_learn import KerasClassifier |
| 7 | +from sklearn.cross_validation import cross_val_score |
| 8 | +from sklearn.preprocessing import LabelEncoder |
| 9 | +from sklearn.cross_validation import StratifiedKFold |
| 10 | +from sklearn.preprocessing import StandardScaler |
| 11 | +from sklearn.pipeline import Pipeline |
| 12 | + |
| 13 | +#load data |
| 14 | +dataframe = pandas.read_csv("sonar.csv", header = None) |
| 15 | +dataset = dataframe.values |
| 16 | +# split into input (X) and output (Y) |
| 17 | +X = dataset[:,0:60].astype(float) |
| 18 | +Y = dataset[:,60] |
| 19 | + |
| 20 | +# one hot encoding |
| 21 | +encoder = LabelEncoder() |
| 22 | +encoder.fit(Y) |
| 23 | +encoded_Y = encoder.transform(Y) |
| 24 | + |
| 25 | +def create_smaller(): |
| 26 | + #create a network with less neurons in first hidden layer |
| 27 | + # 60i - 30 - 1o |
| 28 | + model = Sequential() |
| 29 | + model.add(Dense(30, input_dim = 60, init = 'normal', activation = 'relu')) |
| 30 | + model.add(Dense(1, init = 'normal', activation = 'sigmoid')) |
| 31 | + #compile model |
| 32 | + model.compile(loss = 'binary_crossentropy', optimizer = 'adam', metrics = ['accuracy']) |
| 33 | + return model |
| 34 | + |
| 35 | +def create_larger(): |
| 36 | + #create a network with more hidden layers |
| 37 | + # 60i - 60 - 30 - 1o |
| 38 | + model = Sequential() |
| 39 | + model.add(Dense(60, input_dim = 60, init = 'normal', activation = 'relu')) |
| 40 | + model.add(Dense(30, init = 'normal', activation = 'relu')) |
| 41 | + model.add(Dense(1, init = 'normal', activation = 'sigmoid')) |
| 42 | + model.compile(loss = 'binary_crossentropy', optimizer = 'adam', metrics = ['accuracy']) |
| 43 | + return model |
| 44 | + |
| 45 | +seed = 7 |
| 46 | +numpy.random.seed(seed) |
| 47 | + |
| 48 | +#evaluating the smaller network |
| 49 | +estimatorsSmall = [] |
| 50 | +estimatorsSmall.append(('standardize', StandardScaler())) |
| 51 | +estimatorsSmall.append(('mlp', KerasClassifier(build_fn = create_smaller, nb_epoch = 100, batch_size = 5, verbose = 0))) |
| 52 | +pipelineSmall = Pipeline(estimatorsSmall) |
| 53 | +kfold = StratifiedKFold(y = encoded_Y, n_folds = 10, shuffle = True, random_state = seed) |
| 54 | +resultsSmall = cross_val_score(pipelineSmall, X, encoded_Y, cv = kfold) |
| 55 | + |
| 56 | +#evaluating the larger network |
| 57 | +estimatorsLarge = [] |
| 58 | +estimatorsLarge.append(('standardize', StandardScaler())) |
| 59 | +estimatorsLarge.append(('mlp', KerasClassifier(build_fn = create_larger, nb_epoch = 100, batch_size = 5, verbose = 0))) |
| 60 | +pipelineLarge = Pipeline(estimatorsLarge) |
| 61 | +kfold = StratifiedKFold(y = encoded_Y, n_folds = 10, shuffle = True, random_state = seed) |
| 62 | +resultsLarge = cross_val_score(pipelineLarge, X, encoded_Y, cv = kfold) |
| 63 | + |
| 64 | +# results |
| 65 | +print("Smaller: %.2f%% (%.2f%%)" % (resultsSmall.mean() * 100, resultsSmall.std() * 100)) |
| 66 | +print("Larger: %.2f%% (%.2f%%)" % (resultsLarge.mean() * 100, resultsLarge.std() * 100)) |
| 67 | + |
| 68 | + |
0 commit comments