You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
{{ message }}
This repository was archived by the owner on Dec 12, 2022. It is now read-only.
//equ->equation//d->delta//s->sign//rt->root
#include<bits/stdc++.h>usingnamespacestd;typedefdouble D;
typedef vector<D> V;
const D inf=1e11,eps=1e-12;
V ans,equ;
int n,i;
D x;
inlineintsgn(D x){
return x<-eps?-1:x>eps;
}
D get(V equ,D x){
D e=1,s=0;
for (int i=0;i<equ.size();i++) s+=e*equ[i],e=e*x;
return s;
}
D find(V equ,D l,D r){
int sl,sr;
if ((sl=sgn(get(equ,l)))==0) return l;
if ((sr=sgn(get(equ,r)))==0) return r;
if (sl*sr>0) return inf;
for (;r-l>eps;){
D m=(l+r)/2;
int sm=sgn(get(equ,m));
if (sm==0) return m;
if (sl*sm<0) r=m;
else l=m;
}
return (l+r)/2;
}
V solve(V equ,int n){
V res;
if (n==1){
if (sgn(equ[1])) res.push_back(-equ[0]/equ[1]);
return res;
}
V dequ(n);
for (int i=0;i<n;i++) dequ[i]=equ[i+1]*(i+1);
V drt=solve(dequ,n-1);
drt.insert(drt.begin(),-inf);
drt.push_back(inf);
for (int i=0;i<drt.size()-1;i++){
D ans=find(equ,drt[i],drt[i+1]);
if (ans<inf) res.push_back(ans);
}
return res;
}
intmain(){
scanf("%d",&n);
for (i=0;i<=n;i++) scanf("%lf",&x),equ.push_back(x);
reverse(equ.begin(),equ.end());//注意逆序
ans=solve(equ,n);
sort(ans.begin(),ans.end());
for (i=0;i<ans.size();i++) printf("%.6lf\n",ans[i]);
}
The text was updated successfully, but these errors were encountered:
Sign up for freeto subscribe to this conversation on GitHub.
Already have an account?
Sign in.
高阶代数方程求根
首先对其求导,求出其导函数的所有零点,那么在导函数两个相邻的零点之间,该n次方程一定是单调的,并且最多只有一个零点,利用这个性质,我们可以二分求出这个零点。
而求出导函数的零点可以递归地做下去,直到n=1时,可以直接返回答案
时间复杂度O(n3log)
Code:
The text was updated successfully, but these errors were encountered: