You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
{{ message }}
This repository was archived by the owner on Dec 12, 2022. It is now read-only.
最大流Dinic算法
Dinic算法
(1)概述:Dinic算法的思路是这样的:每次都不停地用BFS来构造“层次图”,然后用“阻塞流”来增广。这里我特别标出了两个关键词——层次图,阻塞流。
什么是层次图呢?假设在残余网络中,起点到结点u的距离是dist(u),那么dist(u)就是结点u的“层次”。只保留每个点出发到下一层次的弧,就得到了一张层次图。
什么是阻塞流呢?其实就是不考虑反向弧时的“极大流”,比如从s到t的层次图(注意此时是残量网络)中找到了一条简单路径是s->1->3->t。其中s->1的容量是10,1->3的容量是4,3->t的容量是10。那么极大流就是4(因为最大不能超过路径上所有容量的最小值)。4也就是阻塞流。可以直接理解为简单路径上的最小残量值。
因此,该算法第一次就是将上述那条简单路径的所有流量值加上4(这一过程叫“增广”),然后重复原来的过程直到s到t的简单路径不存在为止。可以证明,Dinic算法的时间复杂度的理论上界是O(N^2*M)(N是结点数,M是边数),但实际上Dinic算法比这个理论上界好得多。如果所有边容量均为1,那么时间复杂度是O(min(N^0.67,M^0.5)M);对于二分图最大匹配这样的特殊图,时间复杂度是O(N^0.5M)。
The text was updated successfully, but these errors were encountered: