-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy path02-logistic-regression.py
78 lines (61 loc) · 2.61 KB
/
02-logistic-regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
#Import the data set
titanic_data = pd.read_csv('titanic_train.csv')
#Exploratory data analysis
sns.heatmap(titanic_data.isnull(), cbar=False)
sns.countplot(x='Survived', data=titanic_data)
sns.countplot(x='Survived', hue='Sex', data=titanic_data)
sns.countplot(x='Survived', hue='Pclass', data=titanic_data)
plt.hist(titanic_data['Age'].dropna())
plt.hist(titanic_data['Fare'])
sns.boxplot(titanic_data['Pclass'], titanic_data['Age'])
#Imputation function
def impute_missing_age(columns):
age = columns[0]
passenger_class = columns[1]
if pd.isnull(age):
if(passenger_class == 1):
return titanic_data[titanic_data['Pclass'] == 1]['Age'].mean()
elif(passenger_class == 2):
return titanic_data[titanic_data['Pclass'] == 2]['Age'].mean()
elif(passenger_class == 3):
return titanic_data[titanic_data['Pclass'] == 3]['Age'].mean()
else:
return age
#Impute the missing Age data
titanic_data['Age'] = titanic_data[['Age', 'Pclass']].apply(impute_missing_age, axis = 1)
#Reinvestigate missing data
sns.heatmap(titanic_data.isnull(), cbar=False)
#Drop null data
titanic_data.drop('Cabin', axis=1, inplace = True)
titanic_data.dropna(inplace = True)
#Create dummy variables for Sex and Embarked columns
sex_data = pd.get_dummies(titanic_data['Sex'], drop_first = True)
embarked_data = pd.get_dummies(titanic_data['Embarked'], drop_first = True)
#Add dummy variables to the DataFrame and drop non-numeric data
titanic_data = pd.concat([titanic_data, sex_data, embarked_data], axis = 1)
titanic_data.drop(['Name', 'PassengerId', 'Ticket', 'Sex', 'Embarked'], axis = 1, inplace = True)
#Print the finalized data set
titanic_data.head()
#Split the data set into x and y data
y_data = titanic_data['Survived']
x_data = titanic_data.drop('Survived', axis = 1)
#Split the data set into training data and test data
from sklearn.model_selection import train_test_split
x_training_data, x_test_data, y_training_data, y_test_data = train_test_split(x_data, y_data, test_size = 0.3)
#Create the model
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
#Train the model and create predictions
model.fit(x_training_data, y_training_data)
predictions = model.predict(x_test_data)
#Calculate performance metrics
from sklearn.metrics import classification_report
print(classification_report(y_test_data, predictions))
#Generate a confusion matrix
from sklearn.metrics import confusion_matrix
print(confusion_matrix(y_test_data, predictions))