|
| 1 | +// |
| 2 | +// Copyright (C) 2024 nihui |
| 3 | +// |
| 4 | +// Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | +// you may not use this file except in compliance with the License. |
| 6 | +// You may obtain a copy of the License at |
| 7 | +// |
| 8 | +// http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | +// |
| 10 | +// Unless required by applicable law or agreed to in writing, software |
| 11 | +// distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | +// See the License for the specific language governing permissions and |
| 14 | +// limitations under the License. |
| 15 | +// |
| 16 | + |
| 17 | +#include <opencv2/core.hpp> |
| 18 | +#include <opencv2/imgproc.hpp> |
| 19 | +#include <opencv2/dnn.hpp> |
| 20 | +#include <limits> |
| 21 | +#include <vector> |
| 22 | +#include <algorithm> |
| 23 | + |
| 24 | +namespace cv { |
| 25 | +namespace dnn { |
| 26 | + |
| 27 | +static inline bool SortScorePairDescend(const std::pair<float, int>& pair1, const std::pair<float, int>& pair2) |
| 28 | +{ |
| 29 | + return pair1.first > pair2.first; |
| 30 | +} |
| 31 | + |
| 32 | +// Get max scores with corresponding indices. |
| 33 | +// scores: a set of scores. |
| 34 | +// threshold: only consider scores higher than the threshold. |
| 35 | +// top_k: if -1, keep all; otherwise, keep at most top_k. |
| 36 | +// score_index_vec: store the sorted (score, index) pair. |
| 37 | +inline void GetMaxScoreIndex(const std::vector<float>& scores, const float threshold, const int top_k, |
| 38 | + std::vector<std::pair<float, int> >& score_index_vec) |
| 39 | +{ |
| 40 | + // Generate index score pairs. |
| 41 | + for (size_t i = 0; i < scores.size(); ++i) |
| 42 | + { |
| 43 | + if (scores[i] > threshold) |
| 44 | + { |
| 45 | + score_index_vec.push_back(std::make_pair(scores[i], i)); |
| 46 | + } |
| 47 | + } |
| 48 | + |
| 49 | + // Sort the score pair according to the scores in descending order |
| 50 | + std::stable_sort(score_index_vec.begin(), score_index_vec.end(), SortScorePairDescend); |
| 51 | + |
| 52 | + // Keep top_k scores if needed. |
| 53 | + if (top_k > 0 && top_k < (int)score_index_vec.size()) |
| 54 | + { |
| 55 | + score_index_vec.resize(top_k); |
| 56 | + } |
| 57 | +} |
| 58 | + |
| 59 | +// Do non maximum suppression given bboxes and scores. |
| 60 | +// Inspired by Piotr Dollar's NMS implementation in EdgeBox. |
| 61 | +// https://goo.gl/jV3JYS |
| 62 | +// bboxes: a set of bounding boxes. |
| 63 | +// scores: a set of corresponding confidences. |
| 64 | +// score_threshold: a threshold used to filter detection results. |
| 65 | +// nms_threshold: a threshold used in non maximum suppression. |
| 66 | +// top_k: if not > 0, keep at most top_k picked indices. |
| 67 | +// limit: early terminate once the # of picked indices has reached it. |
| 68 | +// indices: the kept indices of bboxes after nms. |
| 69 | +template <typename BoxType> |
| 70 | +inline void NMSFast_(const std::vector<BoxType>& bboxes, |
| 71 | + const std::vector<float>& scores, const float score_threshold, |
| 72 | + const float nms_threshold, const float eta, const int top_k, |
| 73 | + std::vector<int>& indices, |
| 74 | + float (*computeOverlap)(const BoxType&, const BoxType&), |
| 75 | + int limit = std::numeric_limits<int>::max()) |
| 76 | +{ |
| 77 | + // Get top_k scores (with corresponding indices). |
| 78 | + std::vector<std::pair<float, int> > score_index_vec; |
| 79 | + GetMaxScoreIndex(scores, score_threshold, top_k, score_index_vec); |
| 80 | + |
| 81 | + // Do nms. |
| 82 | + float adaptive_threshold = nms_threshold; |
| 83 | + indices.clear(); |
| 84 | + for (size_t i = 0; i < score_index_vec.size(); ++i) |
| 85 | + { |
| 86 | + const int idx = score_index_vec[i].second; |
| 87 | + bool keep = true; |
| 88 | + for (int k = 0; k < (int)indices.size() && keep; ++k) |
| 89 | + { |
| 90 | + const int kept_idx = indices[k]; |
| 91 | + float overlap = computeOverlap(bboxes[idx], bboxes[kept_idx]); |
| 92 | + keep = overlap <= adaptive_threshold; |
| 93 | + } |
| 94 | + if (keep) |
| 95 | + { |
| 96 | + indices.push_back(idx); |
| 97 | + if ((int)indices.size() >= limit) { |
| 98 | + break; |
| 99 | + } |
| 100 | + } |
| 101 | + if (keep && eta < 1 && adaptive_threshold > 0.5) { |
| 102 | + adaptive_threshold *= eta; |
| 103 | + } |
| 104 | + } |
| 105 | +} |
| 106 | + |
| 107 | +static inline float rectOverlap(const Rect& a, const Rect& b) |
| 108 | +{ |
| 109 | + int Aa = a.area(); |
| 110 | + int Ab = b.area(); |
| 111 | + |
| 112 | + if (Aa + Ab == 0) |
| 113 | + return 0.f; |
| 114 | + |
| 115 | + int intersect = (a & b).area(); |
| 116 | + |
| 117 | + return (float)intersect / (Aa + Ab - intersect); |
| 118 | +} |
| 119 | + |
| 120 | +void NMSBoxes(const std::vector<Rect>& bboxes, const std::vector<float>& scores, |
| 121 | + const float score_threshold, const float nms_threshold, |
| 122 | + std::vector<int>& indices, const float eta, const int top_k) |
| 123 | +{ |
| 124 | + NMSFast_(bboxes, scores, score_threshold, nms_threshold, eta, top_k, indices, rectOverlap); |
| 125 | +} |
| 126 | + |
| 127 | +static inline void NMSBoxesBatchedImpl(const std::vector<Rect>& bboxes, |
| 128 | + const std::vector<float>& scores, const std::vector<int>& class_ids, |
| 129 | + const float score_threshold, const float nms_threshold, |
| 130 | + std::vector<int>& indices, const float eta, const int top_k) |
| 131 | +{ |
| 132 | + int x1, y1, x2, y2, max_coord = 0; |
| 133 | + for (size_t i = 0; i < bboxes.size(); i++) |
| 134 | + { |
| 135 | + x1 = bboxes[i].x; |
| 136 | + y1 = bboxes[i].y; |
| 137 | + x2 = x1 + bboxes[i].width; |
| 138 | + y2 = y1 + bboxes[i].height; |
| 139 | + |
| 140 | + max_coord = std::max(x1, max_coord); |
| 141 | + max_coord = std::max(y1, max_coord); |
| 142 | + max_coord = std::max(x2, max_coord); |
| 143 | + max_coord = std::max(y2, max_coord); |
| 144 | + } |
| 145 | + |
| 146 | + // calculate offset and add offset to each bbox |
| 147 | + std::vector<Rect> bboxes_offset; |
| 148 | + for (size_t i = 0; i < bboxes.size(); i++) |
| 149 | + { |
| 150 | + int offset = class_ids[i] * (max_coord + 1); |
| 151 | + bboxes_offset.push_back(Rect(bboxes[i].x + offset, bboxes[i].y + offset, bboxes[i].width, bboxes[i].height)); |
| 152 | + } |
| 153 | + |
| 154 | + NMSFast_(bboxes_offset, scores, score_threshold, nms_threshold, eta, top_k, indices, rectOverlap); |
| 155 | +} |
| 156 | + |
| 157 | +void NMSBoxesBatched(const std::vector<Rect>& bboxes, |
| 158 | + const std::vector<float>& scores, const std::vector<int>& class_ids, |
| 159 | + const float score_threshold, const float nms_threshold, |
| 160 | + std::vector<int>& indices, const float eta, const int top_k) |
| 161 | +{ |
| 162 | + NMSBoxesBatchedImpl(bboxes, scores, class_ids, score_threshold, nms_threshold, indices, eta, top_k); |
| 163 | +} |
| 164 | + |
| 165 | +static inline bool score_cmp(const std::pair<float, size_t>& a, const std::pair<float, size_t>& b) |
| 166 | +{ |
| 167 | + return a.first == b.first ? a.second > b.second : a.first < b.first; |
| 168 | +} |
| 169 | + |
| 170 | +void softNMSBoxes(const std::vector<Rect>& bboxes, |
| 171 | + const std::vector<float>& scores, |
| 172 | + std::vector<float>& updated_scores, |
| 173 | + const float score_threshold, |
| 174 | + const float nms_threshold, |
| 175 | + std::vector<int>& indices, |
| 176 | + size_t top_k, |
| 177 | + const float sigma, |
| 178 | + SoftNMSMethod method) |
| 179 | +{ |
| 180 | + indices.clear(); |
| 181 | + updated_scores.clear(); |
| 182 | + |
| 183 | + std::vector<std::pair<float, size_t> > score_index_vec(scores.size()); |
| 184 | + for (size_t i = 0; i < scores.size(); i++) |
| 185 | + { |
| 186 | + score_index_vec[i].first = scores[i]; |
| 187 | + score_index_vec[i].second = i; |
| 188 | + } |
| 189 | + |
| 190 | + top_k = top_k == 0 ? scores.size() : std::min(top_k, scores.size()); |
| 191 | + ptrdiff_t start = 0; |
| 192 | + while (indices.size() < top_k) |
| 193 | + { |
| 194 | + auto it = std::max_element(score_index_vec.begin() + start, score_index_vec.end(), score_cmp); |
| 195 | + |
| 196 | + float bscore = it->first; |
| 197 | + size_t bidx = it->second; |
| 198 | + |
| 199 | + if (bscore < score_threshold) |
| 200 | + { |
| 201 | + break; |
| 202 | + } |
| 203 | + |
| 204 | + indices.push_back(static_cast<int>(bidx)); |
| 205 | + updated_scores.push_back(bscore); |
| 206 | + std::swap(score_index_vec[start], *it); // first start elements are chosen |
| 207 | + |
| 208 | + for (size_t i = start + 1; i < scores.size(); ++i) |
| 209 | + { |
| 210 | + float& bscore_i = score_index_vec[i].first; |
| 211 | + const size_t bidx_i = score_index_vec[i].second; |
| 212 | + |
| 213 | + if (bscore_i < score_threshold) |
| 214 | + { |
| 215 | + continue; |
| 216 | + } |
| 217 | + |
| 218 | + float overlap = rectOverlap(bboxes[bidx], bboxes[bidx_i]); |
| 219 | + |
| 220 | + if (method == SOFTNMS_LINEAR) |
| 221 | + { |
| 222 | + if (overlap > nms_threshold) |
| 223 | + { |
| 224 | + bscore_i *= 1.f - overlap; |
| 225 | + } |
| 226 | + } |
| 227 | + else // if (method == SOFTNMS_GAUSSIAN) |
| 228 | + { |
| 229 | + bscore_i *= exp(-(overlap * overlap) / sigma); |
| 230 | + } |
| 231 | + } |
| 232 | + ++start; |
| 233 | + } |
| 234 | +} |
| 235 | + |
| 236 | +} // namespace dnn |
| 237 | +} // namespace cv |
0 commit comments