-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathMnasNet_models.py
163 lines (140 loc) · 4.47 KB
/
MnasNet_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
"""Predefined MnasNet models."""
import tensorflow as tf
import re
from collections import namedtuple
from MnasNet import MnasNetModel
BlockArgs = namedtuple(
"BlockArgs",
[
"kernel_size",
"num_repeat",
"input_filters",
"output_filters",
"expand_ratio",
"id_skip",
"strides",
"se_ratio",
],
defaults=(None,) * 8,
)
GlobalParams = namedtuple(
"GlobalParams",
[
"batch_norm_momentum",
"batch_norm_epsilon",
"dropout_rate",
"data_format",
"input_shape",
"num_classes",
"depth_multiplier",
"depth_divisor",
"min_depth",
"stem_size",
"normalize_input",
],
defaults=(None,) * 11,
)
def decode_block_string(block_string):
"""Gets a MNasNet block through a string notation of arguments.
E.g. r2_k3_s2_e1_i32_o16_se0.25_noskip: r - number of repeat blocks,
k - kernel size, s - strides (1-9), e - expansion ratio, i - input filters,
o - output filters, se - squeeze/excitation ratio
Args:
block_string: a string, a string representation of block arguments.
Returns:
A BlockArgs instance.
Raises:
ValueError: if the strides option is not correctly specified.
"""
assert isinstance(block_string, str)
ops = block_string.split("_")
options = {}
for op in ops:
splits = re.split(r"(\d.*)", op)
if len(splits) >= 2:
(key, value) = splits[:2]
options[key] = value
if "s" not in options or len(options["s"]) != 2:
raise ValueError("Strides options should be a pair of integers.")
return BlockArgs(
kernel_size=int(options["k"]),
num_repeat=int(options["r"]),
input_filters=int(options["i"]),
output_filters=int(options["o"]),
expand_ratio=int(options["e"]),
id_skip="noskip" not in block_string,
se_ratio=(float(options["se"]) if "se" in options else None),
strides=[int(options["s"][0]), int(options["s"][1])],
)
def Build_MnasNet(model_name, override_params=None):
global_params = GlobalParams(
batch_norm_momentum=0.99,
batch_norm_epsilon=1e-3,
dropout_rate=0.2,
data_format="channels_last",
num_classes=1000,
depth_multiplier=None,
input_shape=(224, 224, 3),
depth_divisor=8,
min_depth=None,
stem_size=32,
normalize_input=True,
)
if model_name == "b1":
blocks_args = [
"r1_k3_s11_e1_i32_o16_noskip",
"r3_k3_s22_e3_i16_o24",
"r3_k5_s22_e3_i24_o40",
"r3_k5_s22_e6_i40_o80",
"r2_k3_s11_e6_i80_o96",
"r4_k5_s22_e6_i96_o192",
"r1_k3_s11_e6_i192_o320_noskip",
]
elif model_name == "a1":
blocks_args = [
"r1_k3_s11_e1_i32_o16_noskip",
"r2_k3_s22_e6_i16_o24",
"r3_k5_s22_e3_i24_o40_se0.25",
"r4_k3_s22_e6_i40_o80",
"r2_k3_s11_e6_i80_o112_se0.25",
"r3_k5_s22_e6_i112_o160_se0.25",
"r1_k3_s11_e6_i160_o320",
]
elif model_name == "small":
blocks_args = [
"r1_k3_s11_e1_i16_o8",
"r1_k3_s22_e3_i8_o16",
"r2_k3_s22_e6_i16_o16",
"r4_k5_s22_e6_i16_o32_se0.25",
"r3_k3_s11_e6_i32_o32_se0.25",
"r3_k5_s22_e6_i32_o88_se0.25",
"r1_k3_s11_e6_i88_o144",
]
global_params = global_params._replace(dropout_rate=0.0, stem_size=8)
elif model_name == "d1":
blocks_args = [
"r1_k3_s11_e9_i32_o24",
"r3_k3_s22_e9_i24_o36",
"r5_k3_s22_e9_i36_o48",
"r4_k5_s22_e9_i48_o96",
"r5_k7_s11_e3_i96_o96",
"r3_k3_s22_e9_i96_o80",
"r1_k7_s11_e6_i80_o320_noskip",
]
elif model_name == "d1_320":
blocks_args = [
"r3_k5_s11_e6_i32_o24",
"r4_k7_s22_e9_i24_o36",
"r5_k5_s22_e9_i36_o48",
"r5_k7_s22_e6_i48_o96",
"r5_k3_s11_e9_i96_o144",
"r5_k5_s22_e6_i144_o160",
"r1_k7_s11_e9_i160_o320",
]
else:
raise NotImplementedError("model name is not pre-defined: %s" % model_name)
if override_params:
global_params = global_params._replace(**override_params)
decoded_strings = [decode_block_string(s) for s in blocks_args]
model = MnasNetModel(decoded_strings, global_params)
return model