Skip to content

Commit 4e7eff1

Browse files
authored
Update 2021-04-14-rethinking-logistic-regression.md
1 parent 4b66dff commit 4e7eff1

File tree

1 file changed

+1
-1
lines changed

1 file changed

+1
-1
lines changed

source/_posts/2021-04-14-rethinking-logistic-regression.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -58,7 +58,7 @@ P(Y|X)就是模型预测结果,显然P(Y|X)的值越接近于1,说明模型
5858
![图片](https://img12.360buyimg.com/imagetools/jfs/t1/166877/1/18837/4990/6076dc2cEb4334041/9e31a859c9959c31.png)
5959
显然,要使得模型得效果最佳,则得找到一个最佳参数![图片](https://img13.360buyimg.com/imagetools/jfs/t1/162705/24/18434/839/6076dc26E99d1b894/bb359c62fa1461a0.png)使得![图片](https://img11.360buyimg.com/imagetools/jfs/t1/160500/15/19120/1720/6076dc31Eeecd8a59/0559ea6396285156.png)能取到最大值,这个就是最优化方法里面的极大使然估计(MLE)了,我们找到损失函数了。
6060
![图片](https://img14.360buyimg.com/imagetools/jfs/t1/167463/23/18382/2866/6076dcddE71b550ff/4b8ad513b6f306a8.png)
61-
接下来,我们得看看如何转换这个损失函数:<font color='red'>加负号(最大值问题转化最小值问题,梯度下降能找最小值),取对数(不改单调性,把复杂的连乘变成简单的连加)</font>
61+
接下来,我们得看看如何转换这个损失函数:<font color='red'>加负号(最大值问题转化最小值问题,梯度下降能找最小值),取对数(不改单调性,把复杂的连乘变成简单的连加)</font>
6262
![图片](https://img11.360buyimg.com/imagetools/jfs/t1/167421/29/18421/5797/6076dce3E09aecd3f/fdbd72a04d0abb5e.png)
6363

6464
### 梯度下降

0 commit comments

Comments
 (0)