You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Recently, I noticed that the split pass does not work, both in init and predict operations.
In particular, it results into invalid model parts. I would expect that each part would be a valid net, but this is not the case. I invoked them separately to determine which part plays a role to it, and both passes result in invalid nets.
For example (this is encountered in numerous models):
SSD (ONNX Hub, opset=12)
For split_init pass: "split_init": "IndexError('list index (0) out of range')"
For split_init pass (Checker output): C.check_model_path(\\nonnx.onnx_cpp2py_export.checker.ValidationError: Field \\'type\\' of \\'value_info\\' is required but missing.\\n'
For split_predict pass (Checker output): C.check_model_path(\\nonnx.onnx_cpp2py_export.checker.ValidationError: Field \\'elem_type\\' of \\'type\\' is required but missing.\\n'
YOLOv3 (ONNX Hub, opset=10)
For split_init pass (Checker output): C.check_model_path(\\nonnx.onnx_cpp2py_export.checker.ValidationError: Field \\'type\\' of \\'value_info\\' is required but missing.\\n'
For split_predict pass (Checker output): C.check_model_path(\\nonnx.onnx_cpp2py_export.checker.ValidationError: Nodes in a graph must be topologically sorted, however input \\'TFNodes/yolo_evaluation_layer_1/arange_5/delta:0\\' of node: \\nname: add__252 OpType: Add\\n is not output of any previous nodes.\\n\\n==> Context: Bad node spec for node. Name: TFNodes/yolo_evaluation_layer_1/arange_1__246_loop OpType: Loop\\n'
This behavior occurs on classification models as well (e.g., DenseNet-121-7 and Inception-2).
The text was updated successfully, but these errors were encountered:
Recently, I noticed that the split pass does not work, both in
init
andpredict
operations.In particular, it results into invalid model parts. I would expect that each part would be a valid net, but this is not the case. I invoked them separately to determine which part plays a role to it, and both passes result in invalid nets.
For example (this is encountered in numerous models):
SSD (ONNX Hub, opset=12)
For split_init pass:
"split_init": "IndexError('list index (0) out of range')"
For split_predict pass:
"split_predict": "ValueError(\"Required inputs (['Constant_724', 'Constant_723', 'Constant_721', 'Constant_711', 'Constant_708', 'Constant_698', 'Constant_696', 'Constant_694', 'Constant_693', 'Constant_692', 'Constant_691', 'Constant_689', 'Constant_685', 'ConstantOfShape_680', 'Constant_675', 'Constant_672', 'Constant_662', 'Constant_648', 'Constant_647', 'Constant_644', 'Constant_643', 'Constant_642', 'Constant_722', 'Constant_641', 'Constant_638', 'Constant_636', 'Constant_631', 'Constant_630', 'Constant_623', 'Constant_622', 'Constant_684', 'Constant_621', 'Constant_617', 'Constant_613', 'Constant_609', 'Constant_604', 'Constant_603', 'Constant_602', 'Constant_601', 'Constant_598', 'Constant_597', 'Constant_593', 'Constant_701', 'Constant_591', 'Constant_588', 'Constant_627', 'Constant_585', 'Constant_582', 'Constant_578', 'Constant_577', 'Constant_576', 'Constant_574', 'Constant_573', 'Constant_571', 'Constant_569', 'Constant_568', 'Constant_608', 'Constant_566', 'Constant_562', 'Constant_561', 'Constant_560', 'Constant_556', 'Constant_551', 'Constant_539', 'Constant_538', 'Constant_536', 'Constant_534', 'Constant_639', 'Constant_531', 'Constant_528', 'Constant_525', 'Constant_522', 'Constant_520', 'Constant_518', 'Constant_612', 'backbone.model.layer2.0.3.bn2.running_var', 'backbone.model.layer1.4.2.bn2.running_mean', 'Constant_544', 'backbone.model.layer2.0.3.bn2.running_mean', 'backbone.model.layer1.0.weight', 'backbone.model.layer2.0.2.conv2.weight', 'backbone.model.layer2.0.2.bn1.weight', 'Constant_686', 'Constant_553', 'backbone.conf.5.weight', 'Constant_527', 'backbone.model.layer2.0.2.conv1.weight', 'Unsqueeze_412', 'backbone.model.layer2.0.4.conv1.weight', 'backbone.loc.5.weight', 'ConstantOfShape_678', 'backbone.model.layer2.0.1.bn2.running_mean', 'Constant_501', 'Constant_649', 'backbone.model.layer2.0.1.bn1.running_var', 'backbone.model.layer1.4.2.conv2.weight', 'backbone.model.layer1.5.2.bn2.running_var', 'Constant_614', 'backbone.model.layer2.0.1.bn1.weight', 'backbone.model.layer2.0.1.conv1.weight', 'backbone.model.layer1.5.0.bn2.bias', 'backbone.loc.3.bias', 'backbone.model.layer2.0.0.downsample.0.weight', 'backbone.model.layer2.0.0.bn2.running_mean', 'ConstantOfShape_682', 'backbone.model.layer2.0.2.bn2.bias', 'Constant_663', 'backbone.model.layer2.0.3.bn1.weight', 'backbone.model.layer2.0.0.bn1.bias', 'backbone.model.layer1.5.3.bn2.running_mean', 'backbone.model.layer1.5.3.conv2.weight', 'Constant_493', 'Constant_667', 'backbone.model.layer1.5.3.bn1.running_mean', 'Constant_673', 'backbone.loc.1.bias', 'backbone.model.layer1.5.3.bn1.bias', 'backbone.model.layer2.0.2.bn2.running_mean', 'Constant_665', 'backbone.model.layer1.5.3.bn1.weight', 'backbone.loc.2.bias', 'Constant_494', 'backbone.model.layer1.1.running_mean', 'Constant_541', 'backbone.model.layer2.0.2.bn1.running_mean', 'backbone.model.layer1.5.2.bn1.running_var', 'backbone.model.layer1.4.1.conv1.weight', 'backbone.additional_blocks.3.2.bias', 'backbone.model.layer2.0.0.downsample.1.running_mean', 'backbone.model.layer1.5.3.bn2.running_var', 'backbone.model.layer1.5.2.bn1.running_mean', 'Constant_523', 'backbone.model.layer1.5.1.bn1.bias', 'backbone.model.layer2.0.0.bn2.running_var', 'backbone.model.layer1.5.0.bn2.running_var', 'backbone.model.layer1.5.2.bn1.bias', 'backbone.additional_blocks.2.0.bias', 'backbone.model.layer2.0.2.bn1.bias', 'backbone.model.layer1.4.2.bn2.weight', 'Unsqueeze_445', 'backbone.model.layer1.4.1.bn1.running_var', 'backbone.model.layer2.0.0.bn1.running_mean', 'backbone.model.layer1.4.1.bn2.running_var', 'backbone.model.layer1.5.2.bn2.weight', 'backbone.conf.2.bias', 'Constant_620', 'backbone.model.layer1.5.0.downsample.1.running_var', 'backbone.model.layer1.4.2.bn1.weight', 'Constant_482', 'Constant_596', 'backbone.model.layer1.5.1.bn1.running_mean', 'Unsqueeze_444', 'Constant_670', 'backbone.model.layer1.5.3.bn2.weight', 'backbone.model.layer1.4.1.bn1.bias', 'Unsqueeze_467', 'backbone.model.layer2.0.0.bn2.weight', 'Constant_567', 'Constant_510', 'backbone.model.layer1.4.0.conv2.weight', 'backbone.model.layer1.4.0.bn2.running_mean', 'backbone.model.layer1.4.1.bn2.running_mean', 'backbone.model.layer1.5.2.bn2.bias', 'backbone.additional_blocks.2.0.weight', 'backbone.model.layer2.0.3.bn1.running_var', 'backbone.model.layer2.0.1.bn2.running_var', 'backbone.model.layer1.5.0.bn1.running_var', 'Constant_515', 'backbone.model.layer1.4.0.bn1.weight', 'backbone.model.layer1.4.0.bn2.running_var', 'backbone.model.layer1.5.3.bn2.bias', 'backbone.model.layer2.0.3.conv2.weight', 'backbone.model.layer1.5.2.conv2.weight', 'Constant_543', 'backbone.model.layer1.4.2.bn1.running_mean', 'backbone.model.layer2.0.1.bn1.running_mean', 'backbone.model.layer1.4.2.bn1.bias', 'backbone.model.layer1.5.1.bn1.running_var', 'backbone.model.layer1.1.running_var', 'backbone.model.layer2.0.5.bn1.running_var', 'Constant_480', 'Constant_607', 'backbone.model.layer1.4.1.conv2.weight', 'Constant_476', 'backbone.model.layer2.0.3.bn2.bias', 'backbone.model.layer2.0.0.conv2.weight', 'backbone.model.layer2.0.1.conv2.weight', 'backbone.model.layer2.0.1.bn1.bias', 'backbone.model.layer1.5.3.conv1.weight', 'backbone.model.layer1.4.1.bn2.bias', 'Unsqueeze_422', 'backbone.model.layer1.1.weight', 'backbone.model.layer2.0.2.bn2.weight', 'backbone.model.layer1.5.1.conv1.weight', 'backbone.model.layer1.4.0.conv1.weight', 'backbone.model.layer1.5.1.bn2.bias', 'Constant_625', 'backbone.model.layer1.1.bias', 'Constant_587', 'backbone.model.layer2.0.0.bn1.running_var', 'backbone.model.layer1.4.0.bn2.weight', 'backbone.model.layer2.0.2.bn2.running_var', 'backbone.model.layer1.4.0.bn2.bias', 'backbone.model.layer1.4.2.bn1.running_var', 'backbone.model.layer1.5.0.bn2.running_mean', 'backbone.model.layer1.5.3.bn1.running_var', 'backbone.model.layer1.5.0.downsample.1.running_mean', 'Constant_563', 'backbone.model.layer2.0.0.downsample.1.running_var', 'backbone.model.layer1.4.2.bn2.bias', 'Constant_487', 'Constant_533', 'backbone.model.layer2.0.4.bn1.weight', 'backbone.model.layer2.0.3.bn1.bias', 'backbone.model.layer1.4.1.bn1.running_mean', 'backbone.loc.0.weight', 'backbone.model.layer1.4.2.bn2.running_var', 'backbone.model.layer1.4.0.bn1.running_var', 'backbone.additional_blocks.0.0.weight', 'backbone.model.layer2.0.3.bn2.weight', 'backbone.model.layer2.0.0.bn2.bias', 'backbone.model.layer1.5.0.bn1.weight', 'backbone.model.layer1.5.2.bn1.weight', 'Constant_669', 'Constant_504', 'backbone.model.layer1.5.0.bn1.bias', 'backbone.model.layer1.5.0.bn1.running_mean', 'backbone.conf.3.bias', 'Constant_558', 'backbone.additional_blocks.1.0.weight', 'Constant_438', 'backbone.model.layer1.5.1.bn2.running_mean', 'backbone.model.layer1.5.0.conv2.weight', 'backbone.model.layer1.4.1.bn1.weight', 'backbone.model.layer1.4.1.bn2.weight', 'Unsqueeze_356', 'backbone.model.layer1.5.0.bn2.weight', 'Constant_474', 'backbone.model.layer1.5.1.conv2.weight', 'backbone.model.layer1.5.0.downsample.0.weight', 'backbone.model.layer2.0.5.conv2.weight', 'Constant_579', 'backbone.model.layer2.0.0.bn1.weight', 'backbone.model.layer1.5.0.downsample.1.bias', 'backbone.model.layer2.0.5.bn2.running_mean', 'backbone.model.layer1.5.0.conv1.weight', 'backbone.model.layer1.4.0.bn1.bias', 'Constant_526', 'backbone.model.layer2.0.5.bn1.weight', 'Constant_731', 'Unsqueeze_345', 'backbone.model.layer1.5.0.downsample.1.weight', 'backbone.model.layer1.5.1.bn2.weight', 'Constant_506', 'backbone.model.layer2.0.4.bn1.running_mean', 'Constant_632', 'Unsqueeze_346', 'backbone.model.layer2.0.4.bn1.running_var', 'backbone.model.layer2.0.0.downsample.1.weight', 'backbone.model.layer2.0.4.bn2.weight', 'backbone.model.layer2.0.4.bn2.bias', 'Constant_590', 'backbone.model.layer2.0.4.conv2.weight', 'backbone.model.layer2.0.4.bn2.running_mean', 'backbone.model.layer2.0.3.conv1.weight', 'backbone.model.layer1.5.1.bn2.running_var', 'backbone.model.layer1.5.2.conv1.weight', 'backbone.model.layer2.0.4.bn2.running_var', 'backbone.model.layer2.0.5.bn1.bias', 'Constant_552', 'backbone.model.layer2.0.5.bn1.running_mean', 'backbone.model.layer2.0.5.bn2.bias', 'backbone.model.layer2.0.5.bn2.running_var', 'backbone.additional_blocks.0.0.bias', 'backbone.additional_blocks.0.2.weight', 'Constant_532', 'backbone.additional_blocks.0.2.bias', 'backbone.loc.5.bias', 'backbone.additional_blocks.1.0.bias', 'Constant_668', 'Constant_503', 'Constant_555', 'backbone.additional_blocks.1.2.weight', 'Unsqueeze_411', 'backbone.additional_blocks.1.2.bias', 'Constant_664', 'backbone.additional_blocks.2.2.weight', 'Constant_491', 'Constant_633', 'Constant_405', 'backbone.additional_blocks.2.2.bias', 'Constant_611', 'Constant_460', 'backbone.additional_blocks.3.0.weight', 'Constant_637', 'backbone.additional_blocks.3.0.bias', 'backbone.additional_blocks.3.2.weight', 'backbone.model.layer2.0.1.bn2.weight', 'Unsqueeze_368', 'backbone.additional_blocks.4.0.weight', 'backbone.additional_blocks.4.0.bias', 'backbone.model.layer1.4.0.bn1.running_mean', 'Constant_485', 'backbone.additional_blocks.4.2.weight', 'Constant_687', 'Constant_572', 'backbone.additional_blocks.4.2.bias', 'backbone.conf.0.weight', 'backbone.loc.0.bias', 'Unsqueeze_466', 'Constant_652', 'Constant_339', 'Constant_674', 'backbone.conf.0.bias', 'Constant_516', 'Constant_350', 'Constant_521', 'backbone.conf.4.weight', 'backbone.model.layer1.5.2.bn2.running_mean', 'backbone.model.layer2.0.1.bn2.bias', 'Unsqueeze_357', 'Constant_557', 'backbone.loc.1.weight', 'Unsqueeze_367', 'backbone.conf.1.weight', 'Constant_586', 'backbone.loc.2.weight', 'backbone.model.layer1.4.2.conv1.weight', 'backbone.conf.1.bias', 'Unsqueeze_378', 'Constant_517', 'Constant_383', 'Constant_537', 'Unsqueeze_389', 'Constant_497', 'Unsqueeze_390', 'Constant_592', 'backbone.conf.2.weight', 'Constant_542', 'Constant_394', 'backbone.model.layer2.0.0.conv1.weight', 'Constant_502', 'Constant_628', 'Unsqueeze_400', 'backbone.model.layer2.0.0.downsample.1.bias', 'Unsqueeze_401', 'backbone.loc.3.weight', 'Constant_416', 'backbone.model.layer2.0.3.bn1.running_mean', 'Unsqueeze_423', 'backbone.loc.4.weight', 'Constant_513', 'Constant_372', 'backbone.loc.4.bias', 'Constant_626', 'backbone.model.layer1.5.1.bn1.weight', 'Constant_427', 'Constant_489', 'Unsqueeze_433', 'Constant_595', 'Constant_547', 'backbone.conf.3.weight', 'Unsqueeze_434', 'Constant_479', 'backbone.conf.4.bias', 'Constant_449', 'Constant_606', 'Unsqueeze_455', 'Unsqueeze_456', 'backbone.model.layer2.0.5.bn2.weight', 'Constant_496', 'backbone.conf.5.bias', 'Unsqueeze_379', 'Constant_475', 'backbone.model.layer2.0.2.bn1.running_var', 'backbone.model.layer2.0.5.conv1.weight', 'Constant_477', 'backbone.model.layer2.0.4.bn1.bias', 'Constant_481', 'Constant_361', 'Constant_484', 'Constant_486', 'Constant_646', 'Constant_492', 'Constant_550', 'Constant_498', 'Constant_499', 'Constant_508']) are missing from input feed (['image']).\")
YOLOv3 (ONNX Hub, opset=12)
For split_init pass (Checker output):
C.check_model_path(\\nonnx.onnx_cpp2py_export.checker.ValidationError: Field \\'type\\' of \\'value_info\\' is required but missing.\\n'
For split_predict pass (Checker output):
C.check_model_path(\\nonnx.onnx_cpp2py_export.checker.ValidationError: Field \\'elem_type\\' of \\'type\\' is required but missing.\\n'
YOLOv3 (ONNX Hub, opset=10)
For split_init pass (Checker output):
C.check_model_path(\\nonnx.onnx_cpp2py_export.checker.ValidationError: Field \\'type\\' of \\'value_info\\' is required but missing.\\n'
For split_predict pass (Checker output):
C.check_model_path(\\nonnx.onnx_cpp2py_export.checker.ValidationError: Nodes in a graph must be topologically sorted, however input \\'TFNodes/yolo_evaluation_layer_1/arange_5/delta:0\\' of node: \\nname: add__252 OpType: Add\\n is not output of any previous nodes.\\n\\n==> Context: Bad node spec for node. Name: TFNodes/yolo_evaluation_layer_1/arange_1__246_loop OpType: Loop\\n'
This behavior occurs on classification models as well (e.g., DenseNet-121-7 and Inception-2).
The text was updated successfully, but these errors were encountered: