Skip to content

ValueError: Input and output must have the same number of spatial dimensions, #1625

Open
@deepakkupanda

Description

@deepakkupanda

deepakpanda7/code/Users/deepakpanda/segmentation/mmsegmentation/work_dirs/pspnet_r101-d8_512x512_160k_p3m10k
2022-05-28 12:13:16,781 - mmseg - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH ) PolyLrUpdaterHook
(NORMAL ) CheckpointHook
(LOW ) DistEvalHook
(VERY_LOW ) TextLoggerHook

before_train_epoch:
(VERY_HIGH ) PolyLrUpdaterHook
(LOW ) IterTimerHook
(LOW ) DistEvalHook
(VERY_LOW ) TextLoggerHook

before_train_iter:
(VERY_HIGH ) PolyLrUpdaterHook
(LOW ) IterTimerHook
(LOW ) DistEvalHook

after_train_iter:
(ABOVE_NORMAL) OptimizerHook
(NORMAL ) CheckpointHook
(LOW ) IterTimerHook
(LOW ) DistEvalHook
(VERY_LOW ) TextLoggerHook

after_train_epoch:
(NORMAL ) CheckpointHook
(LOW ) DistEvalHook
(VERY_LOW ) TextLoggerHook

before_val_epoch:
(LOW ) IterTimerHook
(VERY_LOW ) TextLoggerHook

before_val_iter:
(LOW ) IterTimerHook

after_val_iter:
(LOW ) IterTimerHook

after_val_epoch:
(VERY_LOW ) TextLoggerHook

after_run:
(VERY_LOW ) TextLoggerHook

2022-05-28 12:13:16,781 - mmseg - INFO - workflow: [('train', 1)], max: 160000 iters
2022-05-28 12:13:16,781 - mmseg - INFO - Checkpoints will be saved to /mnt/batch/tasks/shared/LS_root/mounts/clusters/deepakpanda7/code/Users/deepakpanda/segmentation/mmsegmentation/work_dirs/pspnet_r101-d8_512x512_160k_p3m10k by HardDiskBackend.
Traceback (most recent call last):
File "/mnt/batch/tasks/shared/LS_root/mounts/clusters/deepakpanda7/code/Users/deepakpanda/segmentation/mmsegmentation/tools/train.py", line 241, in
main()
File "/mnt/batch/tasks/shared/LS_root/mounts/clusters/deepakpanda7/code/Users/deepakpanda/segmentation/mmsegmentation/tools/train.py", line 229, in main
train_segmentor(
File "/mnt/batch/tasks/shared/LS_root/mounts/clusters/deepakpanda7/code/Users/deepakpanda/segmentation/mmsegmentation/mmseg/apis/train.py", line 191, in train_segmentor
runner.run(data_loaders, cfg.workflow)
File "/anaconda/envs/open-mmlab/lib/python3.10/site-packages/mmcv/runner/iter_based_runner.py", line 134, in run
iter_runner(iter_loaders[i], **kwargs)
File "/anaconda/envs/open-mmlab/lib/python3.10/site-packages/mmcv/runner/iter_based_runner.py", line 61, in train
outputs = self.model.train_step(data_batch, self.optimizer, **kwargs)
File "/anaconda/envs/open-mmlab/lib/python3.10/site-packages/mmcv/parallel/distributed.py", line 59, in train_step
output = self.module.train_step(*inputs[0], **kwargs[0])
File "/mnt/batch/tasks/shared/LS_root/mounts/clusters/deepakpanda7/code/Users/deepakpanda/segmentation/mmsegmentation/mmseg/models/segmentors/base.py", line 138, in train_step
losses = self(**data_batch)
File "/anaconda/envs/open-mmlab/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl
return forward_call(*input, **kwargs)
File "/anaconda/envs/open-mmlab/lib/python3.10/site-packages/mmcv/runner/fp16_utils.py", line 110, in new_func
return old_func(*args, **kwargs)
File "/mnt/batch/tasks/shared/LS_root/mounts/clusters/deepakpanda7/code/Users/deepakpanda/segmentation/mmsegmentation/mmseg/models/segmentors/base.py", line 108, in forward
return self.forward_train(img, img_metas, **kwargs)
File "/mnt/batch/tasks/shared/LS_root/mounts/clusters/deepakpanda7/code/Users/deepakpanda/segmentation/mmsegmentation/mmseg/models/segmentors/encoder_decoder.py", line 143, in forward_train
loss_decode = self._decode_head_forward_train(x, img_metas,
File "/mnt/batch/tasks/shared/LS_root/mounts/clusters/deepakpanda7/code/Users/deepakpanda/segmentation/mmsegmentation/mmseg/models/segmentors/encoder_decoder.py", line 86, in _decode_head_forward_train
loss_decode = self.decode_head.forward_train(x, img_metas,
File "/mnt/batch/tasks/shared/LS_root/mounts/clusters/deepakpanda7/code/Users/deepakpanda/segmentation/mmsegmentation/mmseg/models/decode_heads/decode_head.py", line 204, in forward_train
losses = self.losses(seg_logits, gt_semantic_seg)
File "/anaconda/envs/open-mmlab/lib/python3.10/site-packages/mmcv/runner/fp16_utils.py", line 198, in new_func
return old_func(*args, **kwargs)
File "/mnt/batch/tasks/shared/LS_root/mounts/clusters/deepakpanda7/code/Users/deepakpanda/segmentation/mmsegmentation/mmseg/models/decode_heads/decode_head.py", line 235, in losses
seg_logit = resize(
File "/mnt/batch/tasks/shared/LS_root/mounts/clusters/deepakpanda7/code/Users/deepakpanda/segmentation/mmsegmentation/mmseg/ops/wrappers.py", line 27, in resize
return F.interpolate(input, size, scale_factor, mode, align_corners)
File "/anaconda/envs/open-mmlab/lib/python3.10/site-packages/torch/nn/functional.py", line 3835, in interpolate
raise ValueError(
ValueError: Input and output must have the same number of spatial dimensions, but got input with with spatial dimensions of [64, 64] and output size of torch.Size([512, 512, 3]). Please provide input tensor in (N, C, d1, d2, ...,dK) format and output size in (o1, o2, ...,oK) format.
ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 1) local_rank: 0 (pid: 18487) of binary: /anaconda/envs/open-mmlab/bin/python
tools/dist_train.sh: line 19: 18484 Segmentation fault (core dumped) python -m torch.distributed.launch --nnodes=$NNODES --node_rank=$NODE_RANK --master_addr=$MASTER_ADDR --nproc_per_node=$GPUS --master_port=$PORT $(dirname "$0")/train.py $CONFIG --seed 0 --launcher pytorch ${@:3}

Metadata

Metadata

Assignees

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions