diff --git a/modules/mcc/CMakeLists.txt b/modules/mcc/CMakeLists.txt index 60fe85a1b44..181cd3d64e4 100644 --- a/modules/mcc/CMakeLists.txt +++ b/modules/mcc/CMakeLists.txt @@ -1,4 +1,4 @@ -set(the_description "Macbeth Chart Detection") +set(the_description "Color Correction Module") ocv_define_module(mcc opencv_core opencv_imgproc diff --git a/modules/mcc/include/opencv2/mcc/ccm.hpp b/modules/mcc/include/opencv2/ccm.hpp similarity index 99% rename from modules/mcc/include/opencv2/mcc/ccm.hpp rename to modules/mcc/include/opencv2/ccm.hpp index a3686db473d..b44ac657af0 100644 --- a/modules/mcc/include/opencv2/mcc/ccm.hpp +++ b/modules/mcc/include/opencv2/ccm.hpp @@ -25,8 +25,8 @@ // Jinheng Zhang // Chenqi Shan -#ifndef __OPENCV_MCC_CCM_HPP__ -#define __OPENCV_MCC_CCM_HPP__ +#ifndef __OPENCV_CCM_HPP__ +#define __OPENCV_CCM_HPP__ #include #include @@ -35,7 +35,8 @@ namespace cv { namespace ccm { -/** @addtogroup color_correction + +/** @defgroup ccm Color Correction module @{ Introduction diff --git a/modules/mcc/include/opencv2/mcc.hpp b/modules/mcc/include/opencv2/mcc.hpp deleted file mode 100644 index e49f3053ffa..00000000000 --- a/modules/mcc/include/opencv2/mcc.hpp +++ /dev/null @@ -1,59 +0,0 @@ -// This file is part of OpenCV project. -// It is subject to the license terms in the LICENSE file found in the top-level directory -// of this distribution and at http://opencv.org/license.html. - -/* - * MIT License - * - * Copyright (c) 2018 Pedro Diamel Marrero Fernández - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to deal - * in the Software without restriction, including without limitation the rights - * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell - * copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ - -#ifndef __OPENCV_MCC_HPP__ -#define __OPENCV_MCC_HPP__ - - -#include "mcc/checker_detector.hpp" -#include "mcc/checker_model.hpp" -#include "mcc/ccm.hpp" - -/** @defgroup mcc Macbeth Chart module -@{ - @defgroup color_correction Color Correction Model -@} - - -@addtogroup mcc - -Introduction ------------- - -ColorCharts are a tool for calibrating the color profile of camera, which not -only depends on the intrinsic and extrinsic parameters of camera but also on the -lighting conditions. This is done by taking the image of a chart, such that the -value of its colors present in it known, in the image the color values changes -depeding on many variables, this gives us the colors initially present and the -colors that are present in the image, based on this information we can apply any -suitable algorithm to find the actual color of all the objects present in the -image. - -*/ - -#endif diff --git a/modules/mcc/include/opencv2/mcc/checker_detector.hpp b/modules/mcc/include/opencv2/mcc/checker_detector.hpp deleted file mode 100644 index c12e02ab01f..00000000000 --- a/modules/mcc/include/opencv2/mcc/checker_detector.hpp +++ /dev/null @@ -1,222 +0,0 @@ -// This file is part of OpenCV project. -// It is subject to the license terms in the LICENSE file found in the top-level directory -// of this distribution and at http://opencv.org/license.html. - -/* - * MIT License - * - * Copyright (c) 2018 Pedro Diamel Marrero Fernández - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to deal - * in the Software without restriction, including without limitation the rights - * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell - * copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ - -#ifndef __OPENCV_MCC_CHECKER_DETECTOR_HPP__ -#define __OPENCV_MCC_CHECKER_DETECTOR_HPP__ -#include -#include "checker_model.hpp" -#include - -//----------To view debugging output----------------------------- -//Read the tutorial on how to use debugging in this module -//It can be found in the documentation of 'mcc' modules, -//Then uncomment the following line to view debugging output -//--------------------------------------------------------------- -// #define MCC_DEBUG -//--------------------------------------------------------------- - -namespace cv -{ -namespace mcc -{ -//! @addtogroup mcc -//! @{ - -/** - * @brief Parameters for the detectMarker process: - * - int adaptiveThreshWinSizeMin : minimum window size for adaptive - * thresholding before finding contours - * (default 23). - * - int adaptiveThreshWinSizeMax : maximum window size for adaptive - * thresholding before finding contours - * (default 153). - * - int adaptiveThreshWinSizeStep : increments from adaptiveThreshWinSizeMin to - * adaptiveThreshWinSizeMax during the - * thresholding (default 16). - * - double adaptiveThreshConstant : constant for adaptive thresholding before - * finding contours (default 7) - * - double minContoursAreaRate : determine minimum area for marker contour to - * be detected. This is defined as a rate respect - * to the area of the input image. Used only if - * neural network is used (default 0.003). - * - double minContoursArea : determine minimum area for marker contour to be - * detected. This is defined as the actual area. Used - * only if neural network is not used (default 100). - * - double confidenceThreshold : minimum confidence for a bounding box detected - * by neural network to classify as - * detection.(default 0.5) - * (0<=confidenceThreshold<=1) - * - double minContourSolidity : minimum solidity of a contour for it be - * detected as a square in the chart. (default - * 0.9). - * - double findCandidatesApproxPolyDPEpsMultiplier : multipler to be used in - * cv::ApproxPolyDP function - * (default 0.05) - * - int borderWidth : width of the padding used to pass the inital neural - * network detection in the succeeding system.(default 0) - * - float B0factor : distance between two neighbours squares of the same chart. - * Defined as the ratio between distance and large dimension - * of square (default 1.25) - * - float maxError : maximum allowed error in the detection of a chart. - * default(0.1) - * - int minContourPointsAllowed : minium points in a detected contour. - * default(4) - * - int minContourLengthAllowed : minimum length of a countour. default(100) - * - int minInterContourDistance : minimum distance between two contours. - * default(100) - * - int minInterCheckerDistance : minimum distance between two checkers. - * default(10000) - * - int minImageSize : minimum size of the smaller dimension of the image. - * default(1000) - * - unsigned minGroupSize : minimum number of a squared of a chart that must be - * detected. default(4) - */ -struct CV_EXPORTS_W DetectorParameters -{ - - DetectorParameters(); - - CV_WRAP static Ptr create(); - - CV_PROP_RW int adaptiveThreshWinSizeMin; - CV_PROP_RW int adaptiveThreshWinSizeMax; - CV_PROP_RW int adaptiveThreshWinSizeStep; - CV_PROP_RW double adaptiveThreshConstant; - CV_PROP_RW double minContoursAreaRate; - CV_PROP_RW double minContoursArea; - CV_PROP_RW double confidenceThreshold; - CV_PROP_RW double minContourSolidity; - CV_PROP_RW double findCandidatesApproxPolyDPEpsMultiplier; - CV_PROP_RW int borderWidth; - CV_PROP_RW float B0factor; - CV_PROP_RW float maxError; - CV_PROP_RW int minContourPointsAllowed; - CV_PROP_RW int minContourLengthAllowed; - CV_PROP_RW int minInterContourDistance; - CV_PROP_RW int minInterCheckerDistance; - CV_PROP_RW int minImageSize; - CV_PROP_RW unsigned minGroupSize; -}; - -/** @brief A class to find the positions of the ColorCharts in the image. - */ - -class CV_EXPORTS_W CCheckerDetector : public Algorithm -{ -public: - /** \brief Set the net which will be used to find the approximate - * bounding boxes for the color charts. - * - * It is not necessary to use this, but this usually results in - * better detection rate. - * - * \param net the neural network, if the network in empty, then - * the function will return false. - * \return true if it was able to set the detector's network, - * false otherwise. - */ - - CV_WRAP virtual bool setNet(dnn::Net net) = 0; - - /** \brief Find the ColorCharts in the given image. - * - * The found charts are not returned but instead stored in the - * detector, these can be accessed later on using getBestColorChecker() - * and getListColorChecker() - * \param image image in color space BGR - * \param chartType type of the chart to detect - * \param regionsOfInterest regions of image to look for the chart, if - * it is empty, charts are looked for in the - * entire image - * \param nc number of charts in the image, if you don't know the exact - * then keeping this number high helps. - * \param useNet if it is true the network provided using the setNet() - * is used for preliminary search for regions where chart - * could be present, inside the regionsOfInterest provied. - * \param params parameters of the detection system. More information - * about them can be found in the struct DetectorParameters. - * \return true if atleast one chart is detected otherwise false - */ - - CV_WRAP_AS(processWithROI) virtual bool - process(InputArray image, const TYPECHART chartType, - const std::vector ®ionsOfInterest, - const int nc = 1, bool useNet = false, - const Ptr ¶ms = DetectorParameters::create()) = 0; - - - /** \brief Find the ColorCharts in the given image. - * - * Differs from the above one only in the arguments. - * - * This version searches for the chart in the full image. - * - * The found charts are not returned but instead stored in the - * detector, these can be accessed later on using getBestColorChecker() - * and getListColorChecker() - * \param image image in color space BGR - * \param chartType type of the chart to detect - * \param nc number of charts in the image, if you don't know the exact - * then keeping this number high helps. - * \param useNet if it is true the network provided using the setNet() - * is used for preliminary search for regions where chart - * could be present, inside the regionsOfInterest provied. - * \param params parameters of the detection system. More information - * about them can be found in the struct DetectorParameters. - * \return true if atleast one chart is detected otherwise false - */ - - CV_WRAP virtual bool - process(InputArray image, const TYPECHART chartType, - const int nc = 1, bool useNet = false, - const Ptr ¶ms = DetectorParameters::create()) = 0; - - /** \brief Get the best color checker. By the best it means the one - * detected with the highest confidence. - * \return checker A single colorchecker, if atleast one colorchecker - * was detected, 'nullptr' otherwise. - */ - CV_WRAP virtual Ptr getBestColorChecker() = 0; - - /** \brief Get the list of all detected colorcheckers - * \return checkers vector of colorcheckers - */ - CV_WRAP virtual std::vector> getListColorChecker() = 0; - - /** \brief Returns the implementation of the CCheckerDetector. - * - */ - CV_WRAP static Ptr create(); -}; - -//! @} mcc - -} // namespace mcc -} // namespace cv - -#endif diff --git a/modules/mcc/include/opencv2/mcc/checker_model.hpp b/modules/mcc/include/opencv2/mcc/checker_model.hpp deleted file mode 100644 index 5552ea4030b..00000000000 --- a/modules/mcc/include/opencv2/mcc/checker_model.hpp +++ /dev/null @@ -1,147 +0,0 @@ -// This file is part of OpenCV project. -// It is subject to the license terms in the LICENSE file found in the top-level directory -// of this distribution and at http://opencv.org/license.html. - -/* - * MIT License - * - * Copyright (c) 2018 Pedro Diamel Marrero Fernández - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to deal - * in the Software without restriction, including without limitation the rights - * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell - * copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ - -#ifndef __OPENCV_MCC_CHECKER_MODEL_HPP__ -#define __OPENCV_MCC_CHECKER_MODEL_HPP__ -#include -#include -namespace cv -{ -namespace mcc -{ - -//! @addtogroup mcc -//! @{ - -/** TYPECHART - * - * \brief enum to hold the type of the checker - * - */ -enum TYPECHART -{ - MCC24 = 0, ///< Standard Macbeth Chart with 24 squares - SG140, ///< DigitalSG with 140 squares - VINYL18, ///< DKK color chart with 12 squares and 6 rectangle - -}; - -/** CChecker - * - * \brief checker object - * - * This class contains the information about the detected checkers,i.e, their - * type, the corners of the chart, the color profile, the cost, centers chart, - * etc. - * - */ - -class CV_EXPORTS_W CChecker -{ -public: - CChecker() {} - virtual ~CChecker() {} - /** \brief Create a new CChecker object. - * \return A pointer to the implementation of the CChecker - */ - - CV_WRAP static Ptr create(); - -public: - // CV_PROP_RW TYPECHART target; ///< type of checkercolor - // CV_PROP_RW std::vector box; ///< positions of the corners - // CV_PROP_RW cv::Mat charts_rgb; ///< charts profile in rgb color space - // CV_PROP_RW cv::Mat charts_ycbcr; ///< charts profile in YCbCr color space - // CV_PROP_RW float cost; ///< cost to aproximate - // CV_PROP_RW cv::Point2f center; ///< center of the chart. - - CV_WRAP virtual void setTarget(TYPECHART _target) = 0; - CV_WRAP virtual void setBox(std::vector _box) = 0; - CV_WRAP virtual void setChartsRGB(Mat _chartsRGB) = 0; - CV_WRAP virtual void setChartsYCbCr(Mat _chartsYCbCr) = 0; - CV_WRAP virtual void setCost(float _cost) = 0; - CV_WRAP virtual void setCenter(Point2f _center) = 0; - - CV_WRAP virtual TYPECHART getTarget() = 0; - CV_WRAP virtual std::vector getBox() = 0; - - /** @brief Computes and returns the coordinates of the central parts of the charts modules. - * - * This method computes transformation matrix from the checkers's coordinates (`cv::mcc::CChecker::getBox()`) - * and find by this the coordinates of the central parts of the charts modules. - * It is used in `cv::mcc::CCheckerDraw::draw()` and in `ChartsRGB` calculation. - */ - CV_WRAP virtual std::vector getColorCharts() = 0; - - CV_WRAP virtual Mat getChartsRGB() = 0; - CV_WRAP virtual Mat getChartsYCbCr() = 0; - CV_WRAP virtual float getCost() = 0; - CV_WRAP virtual Point2f getCenter() = 0; -}; - -/** \brief checker draw - * - * This class contains the functions for drawing a detected chart. This class - * expects a pointer to the checker which will be drawn by this object in the - * constructor and then later on whenever the draw function is called the - * checker will be drawn. Remember that it is not possible to change the - * checkers which will be draw by a given object, as it is decided in the - * constructor itself. If you want to draw some other object you can create a - * new CCheckerDraw instance. - * - * The reason for this type of design is that in some videos we can assume that - * the checker is always in the same position, even if the image changes, so - * the drawing will always take place at the same position. -*/ -class CV_EXPORTS_W CCheckerDraw -{ - -public: - virtual ~CCheckerDraw() {} - /** \brief Draws the checker to the given image. - * \param img image in color space BGR - */ - CV_WRAP virtual void draw(InputOutputArray img) = 0; - /** \brief Create a new CCheckerDraw object. - * \param pChecker The checker which will be drawn by this object. - * \param color The color by with which the squares of the checker - * will be drawn - * \param thickness The thickness with which the sqaures will be - * drawn - * \return A pointer to the implementation of the CCheckerDraw - */ - CV_WRAP static Ptr create(Ptr pChecker, - cv::Scalar color = CV_RGB(0, 250, 0), - int thickness = 2); -}; - -//! @} mcc -} // namespace mcc -} // namespace cv - -#endif diff --git a/modules/mcc/misc/python/pyopencv_cchecker.hpp b/modules/mcc/misc/python/pyopencv_cchecker.hpp deleted file mode 100644 index ff9cdac1ff1..00000000000 --- a/modules/mcc/misc/python/pyopencv_cchecker.hpp +++ /dev/null @@ -1,18 +0,0 @@ -#include "opencv2/mcc.hpp" - -template <> -struct pyopencvVecConverter> -{ - static bool to(PyObject *obj, std::vector> &value, - const ArgInfo &info) - { - return pyopencv_to_generic_vec(obj, value, info); - } - - static PyObject *from(const std::vector> &value) - { - return pyopencv_from_generic_vec(value); - } -}; -typedef std::vector> vector_Ptr_CChecker; -typedef dnn::Net dnn_Net; diff --git a/modules/mcc/perf/perf_mcc.cpp b/modules/mcc/perf/perf_ccm.cpp similarity index 72% rename from modules/mcc/perf/perf_mcc.cpp rename to modules/mcc/perf/perf_ccm.cpp index f5e721074b7..0d523e3478c 100644 --- a/modules/mcc/perf/perf_mcc.cpp +++ b/modules/mcc/perf/perf_ccm.cpp @@ -3,6 +3,7 @@ // of this distribution and at http://opencv.org/license.html. #include "perf_precomp.hpp" +#include "opencv2/ccm.hpp" namespace opencv_test { @@ -10,18 +11,7 @@ namespace { using namespace std; - -PERF_TEST(CV_mcc_perf, detect) { - string path = cvtest::findDataFile("cv/mcc/mcc_ccm_test.jpg"); - Mat img = imread(path, IMREAD_COLOR); - Ptr detector = CCheckerDetector::create(); - - // detect MCC24 board - TEST_CYCLE() { - ASSERT_TRUE(detector->process(img, MCC24, 1, false)); - } - SANITY_CHECK_NOTHING(); -} +using namespace cv::ccm; PERF_TEST(CV_mcc_perf, infer) { // read gold chartsRGB diff --git a/modules/mcc/perf/perf_main.cpp b/modules/mcc/perf/perf_main.cpp index c6d28db59f8..a5b36b66913 100644 --- a/modules/mcc/perf/perf_main.cpp +++ b/modules/mcc/perf/perf_main.cpp @@ -1,3 +1,3 @@ #include "perf_precomp.hpp" -CV_PERF_TEST_MAIN(mcc) +CV_PERF_TEST_MAIN(ccm) diff --git a/modules/mcc/perf/perf_precomp.hpp b/modules/mcc/perf/perf_precomp.hpp index 5ef54694959..e494ddca5e6 100644 --- a/modules/mcc/perf/perf_precomp.hpp +++ b/modules/mcc/perf/perf_precomp.hpp @@ -2,11 +2,10 @@ #define __OPENCV_PERF_PRECOMP_HPP__ #include "opencv2/ts.hpp" -#include "opencv2/mcc.hpp" +#include "opencv2/ccm.hpp" namespace opencv_test { -using namespace cv::mcc; using namespace cv::ccm; using namespace perf; } diff --git a/modules/mcc/samples/chart_detection.cpp b/modules/mcc/samples/chart_detection.cpp deleted file mode 100644 index 792c54a3514..00000000000 --- a/modules/mcc/samples/chart_detection.cpp +++ /dev/null @@ -1,96 +0,0 @@ -#include - -#include -#include -#include - -using namespace std; -using namespace cv; -using namespace mcc; - -const char *about = "Basic chart detection"; -const char *keys = { - "{ help h usage ? | | show this message }" - "{t | | chartType: 0-Standard, 1-DigitalSG, 2-Vinyl }" - "{v | | Input from video file, if ommited, input comes from camera }" - "{ci | 0 | Camera id if input doesnt come from video (-v) }" - "{nc | 1 | Maximum number of charts in the image }"}; - -int main(int argc, char *argv[]) -{ - - // ---------------------------------------------------------- - // Scroll down a bit (~40 lines) to find actual relevant code - // ---------------------------------------------------------- - - CommandLineParser parser(argc, argv, keys); - parser.about(about); - - int t = parser.get("t"); - - CV_Assert(0 <= t && t <= 2); - TYPECHART chartType = TYPECHART(t); - - int camId = parser.get("ci"); - int nc = parser.get("nc"); - String video; - if (parser.has("v")) - video = parser.get("v"); - - if (!parser.check()) - { - parser.printErrors(); - return 0; - } - - VideoCapture inputVideo; - int waitTime; - if (!video.empty()) - { - inputVideo.open(video); - waitTime = 10; - } - else - { - inputVideo.open(camId); - waitTime = 10; - } - - //-------------------------------------------------------------------------- - //-------------------------Actual Relevant Code----------------------------- - //-------------------------------------------------------------------------- - - while (inputVideo.grab()) - { - - Mat image, imageCopy; - inputVideo.retrieve(image); - imageCopy = image.clone(); - Ptr detector = CCheckerDetector::create(); - // Marker type to detect - if (!detector->process(image, chartType, nc)) - { - printf("ChartColor not detected \n"); - } - else - { - - // get checker - std::vector> checkers = detector->getListColorChecker(); - - for (Ptr checker : checkers) - { - // current checker - Ptr cdraw = CCheckerDraw::create(checker); - cdraw->draw(image); - } - } - imshow("image result | q or esc to quit", image); - imshow("original", imageCopy); - char key = (char)waitKey(waitTime); - if (key == 27) - break; - } - - return 0; -} diff --git a/modules/mcc/samples/chart_detection_with_network.cpp b/modules/mcc/samples/chart_detection_with_network.cpp deleted file mode 100644 index aab197cddb6..00000000000 --- a/modules/mcc/samples/chart_detection_with_network.cpp +++ /dev/null @@ -1,132 +0,0 @@ -#include - -#include -#include -#include -#include - -using namespace std; -using namespace cv; -using namespace mcc; - -const char *about = "Basic chart detection using neural network"; -const char *keys = { - "{ help h usage ? | | show this message }" - "{t | 0 | chartType: 0-Standard, 1-DigitalSG, 2-Vinyl, default:0}" - "{m | | File path of model, if you don't have the model you can \ - find the link in the documentation}" - "{pb | | File path of pbtxt file, available along with with the model \ - file }" - "{v | | Input from video file, if ommited, input comes from camera }" - "{ci | 0 | Camera id if input doesnt come from video (-v) }" - "{nc | 1 | Maximum number of charts in the image }" - "{use_gpu | | Add this flag if you want to use gpu}"}; - -int main(int argc, char *argv[]) -{ - // ---------------------------------------------------------- - // Scroll down a bit (~50 lines) to find actual relevant code - // ---------------------------------------------------------- - - CommandLineParser parser(argc, argv, keys); - parser.about(about); - - if (parser.has("help")) - { - parser.printMessage(); - return -1; - } - - int t = parser.get("t"); - - CV_Assert(0 <= t && t <= 2); - TYPECHART chartType = TYPECHART(t); - - string model_path = parser.get("m"); - string pbtxt_path = parser.get("pb"); - - int camId = parser.get("ci"); - int nc = parser.get("nc"); - - String video; - - if (parser.has("v")) - video = parser.get("v"); - - bool use_gpu = parser.has("use_gpu"); - - if (!parser.check()) - { - parser.printErrors(); - return 0; - } - - VideoCapture inputVideo; - int waitTime; - if (!video.empty()) - { - inputVideo.open(video); - waitTime = 10; - } - else - { - inputVideo.open(camId); - waitTime = 10; - } - - //-------------------------------------------------------------------------- - //-------------------------Actual Relevant Code----------------------------- - //-------------------------------------------------------------------------- - - //load the network - - cv::dnn::Net net = cv::dnn::readNetFromTensorflow(model_path, pbtxt_path); - - if (use_gpu) - { - net.setPreferableBackend(dnn::DNN_BACKEND_CUDA); - net.setPreferableTarget(dnn::DNN_TARGET_CUDA); - } - - Ptr detector = CCheckerDetector::create(); - if (!detector->setNet(net)) - { - cout << "Loading Model failed: Aborting" << endl; - return 0; - } - - while (inputVideo.grab()) - { - Mat image, imageCopy; - inputVideo.retrieve(image); - - imageCopy = image.clone(); - - // Marker type to detect - if (!detector->process(image, chartType, nc, true)) - { - printf("ChartColor not detected \n"); - } - else - { - - // get checker - std::vector> checkers = detector->getListColorChecker(); - for (Ptr checker : checkers) - { - // current checker - - Ptr cdraw = CCheckerDraw::create(checker); - cdraw->draw(image); - } - } - - imshow("image result | q or esc to quit", image); - imshow("original", imageCopy); - char key = (char)waitKey(waitTime); - if (key == 27) - break; - } - - return 0; -} diff --git a/modules/mcc/samples/color_correction_model.cpp b/modules/mcc/samples/color_correction_model.cpp index 20df704370e..02dd62e73a8 100644 --- a/modules/mcc/samples/color_correction_model.cpp +++ b/modules/mcc/samples/color_correction_model.cpp @@ -3,23 +3,17 @@ #include #include -#include +#include #include using namespace std; using namespace cv; -using namespace mcc; using namespace ccm; -using namespace std; const char *about = "Basic chart detection"; const char *keys = "{ help h | | show this message }" - "{t | | chartType: 0-Standard, 1-DigitalSG, 2-Vinyl }" - "{v | | Input from video file, if ommited, input comes from camera }" - "{ci | 0 | Camera id if input doesnt come from video (-v) }" - "{f | 1 | Path of the file to process (-v) }" - "{nc | 1 | Maximum number of charts in the image }"; + "{ f | 1 | Path of the file to process (-v) }"; int main(int argc, char *argv[]) { @@ -37,14 +31,8 @@ int main(int argc, char *argv[]) return 0; } - int t = parser.get("t"); - int nc = parser.get("nc"); string filepath = parser.get("f"); - CV_Assert(0 <= t && t <= 2); - TYPECHART chartType = TYPECHART(t); - - if (!parser.check()) { parser.printErrors(); @@ -59,99 +47,111 @@ int main(int argc, char *argv[]) } //! [get_messages_of_image] - Mat imageCopy = image.clone(); - Ptr detector = CCheckerDetector::create(); - // Marker type to detect - if (!detector->process(image, chartType, nc)) - { - printf("ChartColor not detected \n"); - return 2; + Mat src(24, 1, CV_64FC3); + + // Hardcoded values. Image used: opencv_extra/testdata/cv/mcc/mcc_ccm_test.jpg + double values[24][3] = { + {0.380463, 0.31696, 0.210053}, + {0.649781, 0.520561, 0.452553}, + {0.323114, 0.37593, 0.50123}, + {0.314785, 0.396522, 0.258116}, + {0.452971, 0.418602, 0.578767}, + {0.34908, 0.608649, 0.652283}, + {0.691127, 0.517818, 0.144984}, + {0.208668, 0.224391, 0.485851}, + {0.657849, 0.378126, 0.304115}, + {0.285762, 0.229671, 0.31913}, + {0.513422, 0.685031, 0.337381}, + {0.786459, 0.676133, 0.246303}, + {0.11751, 0.135079, 0.383441}, + {0.190745, 0.470513, 0.296844}, + {0.587832, 0.299132, 0.196117}, + {0.783908, 0.746261, 0.294357}, + {0.615481, 0.359983, 0.471403}, + {0.107095, 0.370516, 0.573142}, + {0.708598, 0.718936, 0.740915}, + {0.593812, 0.612474, 0.63222}, + {0.489774, 0.510077, 0.521757}, + {0.380591, 0.398499, 0.393662}, + {0.27461, 0.293267, 0.275244}, + {0.180753, 0.194968, 0.145006} + }; + + // Assign values to src + for (int i = 0; i < 24; i++) { + src.at(i, 0) = cv::Vec3d(values[i][0], values[i][1], values[i][2]); } - //! [get_color_checker] - vector> checkers = detector->getListColorChecker(); - //! [get_color_checker] - for (Ptr checker : checkers) - { - //! [create] - Ptr cdraw = CCheckerDraw::create(checker); - cdraw->draw(image); - Mat chartsRGB = checker->getChartsRGB(); - Mat src = chartsRGB.col(1).clone().reshape(3, chartsRGB.rows/3); - src /= 255.0; - //! [create] - - //compte color correction matrix - //! [get_ccm_Matrix] - ColorCorrectionModel model1(src, COLORCHECKER_Vinyl); - model1.run(); - Mat ccm = model1.getCCM(); - std::cout<<"ccm "<(18, 1) << - // Vec3d(100, 0.00520000001, -0.0104), - // Vec3d(73.0833969, -0.819999993, -2.02099991), - // Vec3d(62.493, 0.425999999, -2.23099995), - // Vec3d(50.4640007, 0.446999997, -2.32399988), - // Vec3d(37.7970009, 0.0359999985, -1.29700005), - // Vec3d(0, 0, 0), - // Vec3d(51.5880013, 73.5179977, 51.5690002), - // Vec3d(93.6989975, -15.7340002, 91.9420013), - // Vec3d(69.4079971, -46.5940018, 50.4869995), - // Vec3d(66.61000060000001, -13.6789999, -43.1720009), - // Vec3d(11.7110004, 16.9799995, -37.1759987), - // Vec3d(51.973999, 81.9440002, -8.40699959), - // Vec3d(40.5489998, 50.4399986, 24.8490009), - // Vec3d(60.8160019, 26.0690002, 49.4420013), - // Vec3d(52.2529984, -19.9500008, -23.9960003), - // Vec3d(51.2859993, 48.4700012, -15.0579996), - // Vec3d(68.70700069999999, 12.2959995, 16.2129993), - // Vec3d(63.6839981, 10.2930002, 16.7639999)); - - // ColorCorrectionModel model8(src,ref,COLOR_SPACE_Lab_D50_2); - // model8.run(); - //! [reference_color_values] - - //! [make_color_correction] - Mat img_; - cvtColor(image, img_, COLOR_BGR2RGB); - img_.convertTo(img_, CV_64F); - const int inp_size = 255; - const int out_size = 255; - img_ = img_ / inp_size; - Mat calibratedImage= model1.infer(img_); - Mat out_ = calibratedImage * out_size; - //! [make_color_correction] - - //! [Save_calibrated_image] - // Save the calibrated image to {FILE_NAME}.calibrated.{FILE_EXT} - out_.convertTo(out_, CV_8UC3); - Mat img_out = min(max(out_, 0), out_size); - Mat out_img; - cvtColor(img_out, out_img, COLOR_RGB2BGR); - string filename = filepath.substr(filepath.find_last_of('/')+1); - size_t dotIndex = filename.find_last_of('.'); - string baseName = filename.substr(0, dotIndex); - string ext = filename.substr(dotIndex+1, filename.length()-dotIndex); - string calibratedFilePath = baseName + ".calibrated." + ext; - imwrite(calibratedFilePath, out_img); - //! [Save_calibrated_image] - } + //compte color correction matrix + //! [get_ccm_Matrix] + ColorCorrectionModel model1(src, COLORCHECKER_Macbeth); + model1.run(); + Mat ccm = model1.getCCM(); + std::cout<<"ccm "<(18, 1) << + // Vec3d(100, 0.00520000001, -0.0104), + // Vec3d(73.0833969, -0.819999993, -2.02099991), + // Vec3d(62.493, 0.425999999, -2.23099995), + // Vec3d(50.4640007, 0.446999997, -2.32399988), + // Vec3d(37.7970009, 0.0359999985, -1.29700005), + // Vec3d(0, 0, 0), + // Vec3d(51.5880013, 73.5179977, 51.5690002), + // Vec3d(93.6989975, -15.7340002, 91.9420013), + // Vec3d(69.4079971, -46.5940018, 50.4869995), + // Vec3d(66.61000060000001, -13.6789999, -43.1720009), + // Vec3d(11.7110004, 16.9799995, -37.1759987), + // Vec3d(51.973999, 81.9440002, -8.40699959), + // Vec3d(40.5489998, 50.4399986, 24.8490009), + // Vec3d(60.8160019, 26.0690002, 49.4420013), + // Vec3d(52.2529984, -19.9500008, -23.9960003), + // Vec3d(51.2859993, 48.4700012, -15.0579996), + // Vec3d(68.70700069999999, 12.2959995, 16.2129993), + // Vec3d(63.6839981, 10.2930002, 16.7639999)); + + // ColorCorrectionModel model8(src,ref,COLOR_SPACE_Lab_D50_2); + // model8.run(); + //! [reference_color_values] + + //! [make_color_correction] + Mat img_; + cvtColor(image, img_, COLOR_BGR2RGB); + img_.convertTo(img_, CV_64F); + const int inp_size = 255; + const int out_size = 255; + img_ = img_ / inp_size; + Mat calibratedImage= model1.infer(img_); + Mat out_ = calibratedImage * out_size; + //! [make_color_correction] + + //! [Save_calibrated_image] + // Save the calibrated image to {FILE_NAME}.calibrated.{FILE_EXT} + out_.convertTo(out_, CV_8UC3); + Mat img_out = min(max(out_, 0), out_size); + Mat out_img; + cvtColor(img_out, out_img, COLOR_RGB2BGR); + string filename = filepath.substr(filepath.find_last_of('/')+1); + size_t dotIndex = filename.find_last_of('.'); + string baseName = filename.substr(0, dotIndex); + string ext = filename.substr(dotIndex+1, filename.length()-dotIndex); + string calibratedFilePath = baseName + ".calibrated." + ext; + imwrite(calibratedFilePath, out_img); + //! [Save_calibrated_image] return 0; } diff --git a/modules/mcc/src/bound_min.cpp b/modules/mcc/src/bound_min.cpp deleted file mode 100644 index e89ebe88a1d..00000000000 --- a/modules/mcc/src/bound_min.cpp +++ /dev/null @@ -1,177 +0,0 @@ -// This file is part of OpenCV project. -// It is subject to the license terms in the LICENSE file found in the top-level directory -// of this distribution and at http://opencv.org/license.html. - -/* - * MIT License - * - * Copyright (c) 2018 Pedro Diamel Marrero Fernández - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to deal - * in the Software without restriction, including without limitation the rights - * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell - * copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ - -#include "precomp.hpp" -#include "bound_min.hpp" - -namespace cv -{ -namespace mcc -{ -CBoundMin::CBoundMin() - -{ -} - -CBoundMin::~CBoundMin() -{ -} - -void CBoundMin::calculate() -{ - - corners.clear(); - size_t N = chart.size(); - if (!N) - return; - - std::vector X(4 * N); - for (size_t i = 0; i < N; i++) - { - mcc::CChart cc = chart[i]; - for (size_t j = 0; j < 4; j++) - { - X[i * 4 + j] = cc.corners[j]; - } - } - - // media - cv::Point2f mu(0, 0); - for (size_t i = 0; i < 4 * N; i++) - mu += X[i]; - mu /= (4 * (int)N); - - for (size_t i = 0; i < 4 * N; i++) - X[i] -= mu; - - // calculate all line - std::vector L; - L.resize(4 * N); - for (size_t i = 0; i < N; i++) - { - cv::Point3f v0, v1, v2, v3; - v0.x = X[4 * i + 0].x; - v0.y = X[4 * i + 0].y; - v0.z = 1; - v1.x = X[4 * i + 1].x; - v1.y = X[4 * i + 1].y; - v1.z = 1; - v2.x = X[4 * i + 2].x; - v2.y = X[4 * i + 2].y; - v2.z = 1; - v3.x = X[4 * i + 3].x; - v3.y = X[4 * i + 3].y; - v3.z = 1; - - L[4 * i + 0] = v0.cross(v1); - L[4 * i + 1] = v1.cross(v2); - L[4 * i + 2] = v2.cross(v3); - L[4 * i + 3] = v3.cross(v0); - } - - // line convex hull - std::vector dist; - dist.resize(4 * N); - cv::Point2f n; - float d; - - for (size_t i = 0; i < 4 * N; i++) - { - n.x = L[i].x; - n.y = L[i].y; - d = L[i].z; - - int s = 0; - for (size_t j = 0; j < N; j++) - s += (X[j].dot(n) + d) <= 0; - dist[i] = s; - } - - // sort - std::vector idx; - std::vector Ls; - Ls.resize(4 * N); - mcc::sort(dist, idx); - for (size_t i = 0; i < 4 * N; i++) - Ls[i] = L[idx[i]]; - - std::vector Lc; - Lc.resize(4 * N); - Lc[0] = Ls[0]; - cv::Point3f ln; - - int j, k = 0; - for (size_t i = 0; i < 4 * N; i++) - { - - ln = Ls[i]; //current line - if (!validateLine(Lc, ln, k, j)) - { - - Lc[k] = ln; - k++; - } - else if ((abs(Lc[j].z) < abs(ln.z)) && (abs(dist[i] - dist[j]) < 2)) - { - Lc[j] = ln; - } - if (k == 4 && abs(dist[i] - dist[k - 1]) > 2) - break; - } - if (k < 4) - return; - - std::vector thetas; - thetas.resize(4); - for (size_t i = 0; i < 4; i++) - thetas[i] = atan2(Lc[i].y / Lc[i].z, Lc[i].x / Lc[i].z); - - sort(thetas, idx, false); - std::vector lines; - lines.resize(4); - for (size_t i = 0; i < 4; i++) - lines[i] = Lc[idx[i]]; - - cv::Point3f Vcart; - cv::Point2f Vhom; - std::vector V; - V.resize(4); - - for (size_t i = 0; i < 4; i++) - { - j = (i + 1) % 4; - Vcart = lines[i].cross(lines[j]); - Vhom.x = Vcart.x / Vcart.z; - Vhom.y = Vcart.y / Vcart.z; - V[i] = Vhom + mu; - } - - corners = V; -} -} // namespace mcc -} // namespace cv diff --git a/modules/mcc/src/bound_min.hpp b/modules/mcc/src/bound_min.hpp deleted file mode 100644 index 7ee718e351c..00000000000 --- a/modules/mcc/src/bound_min.hpp +++ /dev/null @@ -1,83 +0,0 @@ -// This file is part of OpenCV project. -// It is subject to the license terms in the LICENSE file found in the top-level directory -// of this distribution and at http://opencv.org/license.html. - -/* - * MIT License - * - * Copyright (c) 2018 Pedro Diamel Marrero Fernández - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to deal - * in the Software without restriction, including without limitation the rights - * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell - * copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ - -#ifndef _MCC_BOUND_MIN_HPP -#define _MCC_BOUND_MIN_HPP - -#include "charts.hpp" - -namespace cv -{ - -namespace mcc -{ - -class CBoundMin -{ - -public: - CBoundMin(); - ~CBoundMin(); - - void setCharts(const std::vector &chartIn) { chart = chartIn; } - void getCorners(std::vector &cornersOut) { cornersOut = corners; } - void calculate(); - -private: - std::vector chart; - std::vector corners; - -private: - bool validateLine(const std::vector &Lc, cv::Point3f ln, - int k, int &j) - { - - double theta; - cv::Point2d v0, v1; - - for (j = 0; j < k; j++) - { - v0.x = Lc[j].x; - v0.y = Lc[j].y; - v1.x = ln.x; - v1.y = ln.y; - theta = v0.dot(v1) / (norm(v0) * norm(v1)); - theta = acos(theta); - - if (theta < 0.5) - return true; - } - - return false; - } -}; - -} // namespace mcc - -} // namespace cv -#endif //_MCC_BOUND_MIN_HPP diff --git a/modules/mcc/src/ccm.cpp b/modules/mcc/src/ccm.cpp index aec535e05b4..27c3728a661 100644 --- a/modules/mcc/src/ccm.cpp +++ b/modules/mcc/src/ccm.cpp @@ -25,7 +25,7 @@ // Jinheng Zhang // Chenqi Shan -#include "opencv2/mcc/ccm.hpp" +#include "opencv2/ccm.hpp" #include "linearize.hpp" namespace cv { namespace ccm { diff --git a/modules/mcc/src/charts.cpp b/modules/mcc/src/charts.cpp deleted file mode 100644 index a9353310776..00000000000 --- a/modules/mcc/src/charts.cpp +++ /dev/null @@ -1,96 +0,0 @@ -// This file is part of OpenCV project. -// It is subject to the license terms in the LICENSE file found in the top-level directory -// of this distribution and at http://opencv.org/license.html. - -/* - * MIT License - * - * Copyright (c) 2018 Pedro Diamel Marrero Fernández - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to deal - * in the Software without restriction, including without limitation the rights - * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell - * copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ - -#include "precomp.hpp" -#include "charts.hpp" - -namespace cv -{ -namespace mcc -{ -CChart::CChart() - : perimetro(0), area(0), large_side(0) -{ -} - -CChart::~CChart() -{ -} - -void CChart:: - setCorners(std::vector p) -{ - cv::Point v1, v2; - if (p.empty()) - return; - - // copy - corners = p; - - // Sort the corners in anti-clockwise order - polyanticlockwise(corners); - - // Properties - area = cv::contourArea(corners); - perimetro = perimeter(corners); - center = mace_center(corners); - - v1 = corners[2] - corners[0]; - v2 = corners[3] - corners[1]; - large_side = std::max(cv::norm(v1), cv::norm(v2)); -} - -////////////////////////////////////////////////////////////////////////////////////////////// - -CChartDraw:: - CChartDraw(CChart &pChart, InputOutputArray image) - : m_pChart(pChart), m_image(image.getMat()) -{ -} - -void CChartDraw:: - drawContour(cv::Scalar color /*= CV_RGB(0, 250, 0)*/) const -{ - - //Draw lines - int thickness = 2; - cv::line(m_image, (m_pChart).corners[0], (m_pChart).corners[1], color, thickness, LINE_AA); - cv::line(m_image, (m_pChart).corners[1], (m_pChart).corners[2], color, thickness, LINE_AA); - cv::line(m_image, (m_pChart).corners[2], (m_pChart).corners[3], color, thickness, LINE_AA); - cv::line(m_image, (m_pChart).corners[3], (m_pChart).corners[0], color, thickness, LINE_AA); -} - -void CChartDraw:: - drawCenter(cv::Scalar color /*= CV_RGB(0, 0, 255)*/) const -{ - int radius = 3; - int thickness = 2; - cv::circle(m_image, (m_pChart).center, radius, color, thickness); -} -} // namespace mcc -} // namespace cv diff --git a/modules/mcc/src/charts.hpp b/modules/mcc/src/charts.hpp deleted file mode 100644 index baf97941032..00000000000 --- a/modules/mcc/src/charts.hpp +++ /dev/null @@ -1,90 +0,0 @@ -// This file is part of OpenCV project. -// It is subject to the license terms in the LICENSE file found in the top-level directory -// of this distribution and at http://opencv.org/license.html. - -/* - * MIT License - * - * Copyright (c) 2018 Pedro Diamel Marrero Fernández - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to deal - * in the Software without restriction, including without limitation the rights - * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell - * copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ - -#ifndef _MCC_CHARTS_HPP -#define _MCC_CHARTS_HPP - -namespace cv -{ -namespace mcc -{ - -/** \brief Chart model - * - * .--------. <- px,py - * | | one chart for checker color - * | RGB | - * | Lab | - * | | - * .--------. - * - * \author Pedro Marrero Fernndez - */ - -class CChart -{ - -public: - CChart(); - ~CChart(); - - /**\brief set corners - *\param p[in] new corners - */ - void setCorners(std::vector p); - -public: - std::vector corners; - cv::Point2f center; - double perimetro; - double area; - double large_side; -}; - -/** \brief Chart draw */ -class CChartDraw -{ -public: - /**\brief contructor */ - CChartDraw(CChart &pChart, InputOutputArray image); - - /**\brief draw the chart contour over the image */ - void drawContour(cv::Scalar color = CV_RGB(0, 250, 0)) const; - - /**\brief draw the chart center over the image */ - void drawCenter(cv::Scalar color = CV_RGB(0, 0, 255)) const; - -private: - CChart &m_pChart; - cv::Mat m_image; -}; - -} // namespace mcc -} // namespace cv - -#endif //_MCC_CHARTS_HPP diff --git a/modules/mcc/src/checker_detector.cpp b/modules/mcc/src/checker_detector.cpp deleted file mode 100644 index 7dd5cca317b..00000000000 --- a/modules/mcc/src/checker_detector.cpp +++ /dev/null @@ -1,1372 +0,0 @@ -// This file is part of OpenCV project. -// It is subject to the license terms in the LICENSE file found in the top-level directory -// of this distribution and at http://opencv.org/license.html. - -/* - * MIT License - * - * Copyright (c) 2018 Pedro Diamel Marrero Fernández - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to deal - * in the Software without restriction, including without limitation the rights - * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell - * copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ - -#include "precomp.hpp" - -#include "checker_detector.hpp" -#include "graph_cluster.hpp" -#include "bound_min.hpp" -#include "wiener_filter.hpp" -#include "checker_model.hpp" -#include "debug.hpp" - -namespace cv -{ -namespace mcc -{ - -Ptr CCheckerDetector::create() -{ - return makePtr(); -} - -CCheckerDetectorImpl:: - CCheckerDetectorImpl() - -{ -} - -CCheckerDetectorImpl::~CCheckerDetectorImpl() -{ -} - -bool CCheckerDetectorImpl:: - setNet(cv::dnn::Net _net) -{ - net = _net; - return !net.empty(); -} - -bool CCheckerDetectorImpl:: - _no_net_process(InputArray image, const TYPECHART chartType, const int nc, - const Ptr ¶ms, - std::vector regionsOfInterest) -{ - m_checkers.clear(); - this->net_used = false; - - cv::Mat img = image.getMat(); - for (const cv::Rect ®ion : regionsOfInterest) - { - //------------------------------------------------------------------- - // Run the model to find good regions - //------------------------------------------------------------------- - cv::Mat croppedImage = img(region); -#ifdef MCC_DEBUG - std::string pathOut = "./"; -#endif - //------------------------------------------------------------------- - // prepare image - //------------------------------------------------------------------- - - cv::Mat img_bgr, img_gray; - float asp; - prepareImage(croppedImage, img_gray, img_bgr, asp, params); - -#ifdef MCC_DEBUG - showAndSave("prepare_image", img_gray, pathOut); -#endif - //------------------------------------------------------------------- - // thresholding - //------------------------------------------------------------------- - std::vector img_bw; - performThreshold(img_gray, img_bw, params); - - cv::Mat3f img_rgb_f(img_bgr); - cv::cvtColor(img_rgb_f, img_rgb_f, COLOR_BGR2RGB); - img_rgb_f /= 255; - - cv::Mat img_rgb_org, img_ycbcr_org; - std::vector rgb_planes(3), ycbcr_planes(3); - - // Convert to RGB and YCbCr space - cv::cvtColor(croppedImage, img_rgb_org, COLOR_BGR2RGB); - cv::cvtColor(croppedImage, img_ycbcr_org, COLOR_BGR2YCrCb); - - // Get chanels - split(img_rgb_org, rgb_planes); - split(img_ycbcr_org, ycbcr_planes); - cv::Mutex mtx; - parallel_for_( - Range(0, (int)img_bw.size()), [&](const Range &range) { - const int begin = range.start; - const int end = range.end; - for (int i = begin; i < end; i++) - { - -#ifdef MCC_DEBUG - showAndSave("threshold_image", img_bw[i], pathOut); -#endif - // find contour - //------------------------------------------------------------------- - ContoursVector contours; - findContours(img_bw[i], contours, params); - - if (contours.empty()) - continue; -#ifdef MCC_DEBUG - cv::Mat im_contour(img_bgr.size(), CV_8UC1); - im_contour = cv::Scalar(0); - cv::drawContours(im_contour, contours, -1, cv::Scalar(255), 2, LINE_AA); - showAndSave("find_contour", im_contour, pathOut); -#endif - //------------------------------------------------------------------- - // find candidate - //------------------------------------------------------------------- - - std::vector detectedCharts; - findCandidates(contours, detectedCharts, params); - - if (detectedCharts.empty()) - continue; - -#ifdef MCC_DEBUG - cv::Mat img_chart; - img_bgr.copyTo(img_chart); - - for (size_t ind = 0; ind < detectedCharts.size(); ind++) - { - - CChartDraw chrtdrw((detectedCharts[ind]), img_chart); - chrtdrw.drawCenter(); - chrtdrw.drawContour(); - } - showAndSave("find_candidate", img_chart, pathOut); -#endif - //------------------------------------------------------------------- - // clusters analysis - //------------------------------------------------------------------- - - std::vector G; - clustersAnalysis(detectedCharts, G, params); - - if (G.empty()) - continue; - -#ifdef MCC_DEBUG - cv::Mat im_gru; - img_bgr.copyTo(im_gru); - RNG rng(0xFFFFFFFF); - int radius = 10, thickness = -1; - - std::vector g; - unique(G, g); - size_t Nc = g.size(); - std::vector colors(Nc); - for (size_t ind = 0; ind < Nc; ind++) - colors[ind] = randomcolor(rng); - - for (size_t ind = 0; ind < detectedCharts.size(); ind++) - cv::circle(im_gru, detectedCharts[ind].center, radius, colors[G[ind]], - thickness); - showAndSave("clusters_analysis", im_gru, pathOut); -#endif - //------------------------------------------------------------------- - // checker color recognize - //------------------------------------------------------------------- - - std::vector> colorCharts; - checkerRecognize(img_bgr, detectedCharts, G, chartType, colorCharts, params); - - if (colorCharts.empty()) - continue; - -#ifdef MCC_DEBUG - cv::Mat image_box; - img_bgr.copyTo(image_box); - for (size_t ind = 0; ind < colorCharts.size(); ind++) - { - std::vector ibox = colorCharts[ind]; - cv::Scalar color_box = CV_RGB(0, 0, 255); - int thickness_box = 2; - cv::line(image_box, ibox[0], ibox[1], color_box, thickness_box, LINE_AA); - cv::line(image_box, ibox[1], ibox[2], color_box, thickness_box, LINE_AA); - cv::line(image_box, ibox[2], ibox[3], color_box, thickness_box, LINE_AA); - cv::line(image_box, ibox[3], ibox[0], color_box, thickness_box, LINE_AA); - //cv::circle(image_box, ibox[0], 10, cv::Scalar(0, 0, 255), 3); - //cv::circle(image_box, ibox[1], 10, cv::Scalar(0, 255, 0), 3); - } - showAndSave("checker_recognition", image_box, pathOut); -#endif - //------------------------------------------------------------------- - // checker color analysis - //------------------------------------------------------------------- - std::vector> checkers; - checkerAnalysis(img_rgb_f, chartType, nc, colorCharts, checkers, asp, params, - img_rgb_org, img_ycbcr_org, rgb_planes, ycbcr_planes); - -#ifdef MCC_DEBUG - cv::Mat image_checker; - croppedImage.copyTo(image_checker); - for (size_t ck = 0; ck < checkers.size(); ck++) - { - Ptr cdraw = CCheckerDraw::create((checkers[ck])); - cdraw->draw(image_checker); - } - showAndSave("checker_analysis", image_checker, pathOut); -#endif - for (Ptr checker : checkers) - { - const std::vector& checkerBox = checker->getBox(); - std::vector restore_box(checkerBox.size()); - for (size_t a = 0; a < checkerBox.size(); ++a) { - restore_box[a] = checkerBox[a] + static_cast(region.tl()); - } - checker->setBox(restore_box); - { - cv::AutoLock lock(mtx); - m_checkers.push_back(checker); - } - } - } -#ifdef MCC_DEBUG - }, - 1); //Run only one thread in debug mode -#else - }); -#endif - } - //remove too close detections - removeTooCloseDetections(params); - m_checkers.resize(min(nc, (int)m_checkers.size())); - return !m_checkers.empty(); -} - -bool CCheckerDetectorImpl:: - process(InputArray image, const TYPECHART chartType,const std::vector ®ionsOfInterest, - const int nc /*= 1*/, bool useNet /*=false*/, const Ptr ¶ms) -{ - m_checkers.clear(); - - if (this->net.empty() || !useNet) - { - return _no_net_process(image, chartType, nc, params, regionsOfInterest); - } - this->net_used = true; - - cv::Mat img = image.getMat(); - - cv::Mat img_rgb_org, img_ycbcr_org; - std::vector rgb_planes(3), ycbcr_planes(3); - - // Convert to RGB and YCbCr space - cv::cvtColor(img, img_rgb_org, COLOR_BGR2RGB); - cv::cvtColor(img, img_ycbcr_org, COLOR_BGR2YCrCb); - - // Get chanels - split(img_rgb_org, rgb_planes); - split(img_ycbcr_org, ycbcr_planes); - - for (const cv::Rect ®ion : regionsOfInterest) - { - //------------------------------------------------------------------- - // Run the model to find good regions - //------------------------------------------------------------------- - - cv::Mat croppedImage = img(region); - - int rows = croppedImage.size[0]; - int cols = croppedImage.size[1]; - net.setInput(cv::dnn::blobFromImage(croppedImage, 1.0, cv::Size(), cv::Scalar(), true)); - cv::Mat output = net.forward(); - - Mat detectionMat(output.size[2], output.size[3], CV_32F, output.ptr()); - - for (int i = 0; i < detectionMat.rows; i++) - { - float confidence = detectionMat.at(i, 2); - if (confidence > params->confidenceThreshold) - { - float xTopLeft = max(0.0f, detectionMat.at(i, 3) * cols - params->borderWidth); - float yTopLeft = max(0.0f, detectionMat.at(i, 4) * rows - params->borderWidth); - float xBottomRight = min((float)cols - 1, detectionMat.at(i, 5) * cols + params->borderWidth); - float yBottomRight = min((float)rows - 1, detectionMat.at(i, 6) * rows + params->borderWidth); - - cv::Point2f topLeft = {xTopLeft, yTopLeft}; - cv::Point2f bottomRight = {xBottomRight, yBottomRight}; - - cv::Rect innerRegion(topLeft, bottomRight); - cv::Mat innerCroppedImage = croppedImage(innerRegion); - -#ifdef MCC_DEBUG - std::string pathOut = "./"; -#endif - //------------------------------------------------------------------- - // prepare image - //------------------------------------------------------------------- - - cv::Mat img_bgr, img_gray; - float asp; - prepareImage(innerCroppedImage, img_gray, img_bgr, asp, params); - - //------------------------------------------------------------------- - // thresholding - //------------------------------------------------------------------- - - std::vector img_bw; - performThreshold(img_gray, img_bw, params); - - cv::Mat3f img_rgb_f(img_bgr); - cv::cvtColor(img_rgb_f, img_rgb_f, COLOR_BGR2RGB); - img_rgb_f /= 255; - cv::Mutex mtx; - parallel_for_( - Range(0, (int)img_bw.size()), [&](const Range &range) { - const int begin = range.start; - const int end = range.end; - - for (int ind = begin; ind < end; ind++) - { - -#ifdef MCC_DEBUG - showAndSave("threshold_image", img_bw[ind], pathOut); -#endif - //------------------------------------------------------------------ - // find contour - //------------------------------------------------------------------- - ContoursVector contours; - findContours(img_bw[ind], contours, params); - - if (contours.empty()) - continue; -#ifdef MCC_DEBUG - cv::Mat im_contour(img_bgr.size(), CV_8UC1); - im_contour = cv::Scalar(0); - cv::drawContours(im_contour, contours, -1, cv::Scalar(255), 2, LINE_AA); - showAndSave("find_contour", im_contour, pathOut); -#endif - //------------------------------------------------------------------- - // find candidate - //------------------------------------------------------------------- - - std::vector detectedCharts; - findCandidates(contours, detectedCharts, params); - - if (detectedCharts.empty()) - continue; - -#ifdef MCC_DEBUG - cv::Mat img_chart; - img_bgr.copyTo(img_chart); - - for (size_t index = 0; index < detectedCharts.size(); index++) - { - - CChartDraw chrtdrw((detectedCharts[index]), img_chart); - chrtdrw.drawCenter(); - chrtdrw.drawContour(); - } - showAndSave("find_candidate", img_chart, pathOut); -#endif - //------------------------------------------------------------------- - // clusters analysis - //------------------------------------------------------------------- - - std::vector G; - clustersAnalysis(detectedCharts, G, params); - - if (G.empty()) - continue; -#ifdef MCC_DEBUG - cv::Mat im_gru; - img_bgr.copyTo(im_gru); - RNG rng(0xFFFFFFFF); - int radius = 10, thickness = -1; - - std::vector g; - unique(G, g); - size_t Nc = g.size(); - std::vector colors(Nc); - for (size_t index = 0; index < Nc; index++) - colors[index] = randomcolor(rng); - - for (size_t index = 0; index < detectedCharts.size(); index++) - cv::circle(im_gru, detectedCharts[index].center, radius, colors[G[index]], - thickness); - showAndSave("clusters_analysis", im_gru, pathOut); -#endif - - //------------------------------------------------------------------- - // checker color recognize - //------------------------------------------------------------------- - - std::vector> colorCharts; - checkerRecognize(img_bgr, detectedCharts, G, chartType, colorCharts, params); - - if (colorCharts.empty()) - continue; - -#ifdef MCC_DEBUG - cv::Mat image_box; - img_bgr.copyTo(image_box); - for (size_t index = 0; index < colorCharts.size(); index++) - { - std::vector ibox = colorCharts[index]; - cv::Scalar color_box = CV_RGB(0, 0, 255); - int thickness_box = 2; - cv::line(image_box, ibox[0], ibox[1], color_box, thickness_box, LINE_AA); - cv::line(image_box, ibox[1], ibox[2], color_box, thickness_box, LINE_AA); - cv::line(image_box, ibox[2], ibox[3], color_box, thickness_box, LINE_AA); - cv::line(image_box, ibox[3], ibox[0], color_box, thickness_box, LINE_AA); - //cv::circle(image_box, ibox[0], 10, cv::Scalar(0, 0, 255), 3); - //cv::circle(image_box, ibox[1], 10, cv::Scalar(0, 255, 0), 3); - } - showAndSave("checker_recognition", image_box, pathOut); -#endif - //------------------------------------------------------------------- - // checker color analysis - //------------------------------------------------------------------- - std::vector> checkers; - checkerAnalysis(img_rgb_f, chartType, nc, colorCharts, checkers, asp, params, - img_rgb_org, img_ycbcr_org, rgb_planes, ycbcr_planes); -#ifdef MCC_DEBUG - cv::Mat image_checker; - innerCroppedImage.copyTo(image_checker); - for (size_t ck = 0; ck < checkers.size(); ck++) - { - Ptr cdraw = CCheckerDraw::create((checkers[ck])); - cdraw->draw(image_checker); - } - showAndSave("checker_analysis", image_checker, pathOut); -#endif - for (Ptr checker : checkers) - { - const std::vector& checkerBox = checker->getBox(); - std::vector restore_box(checkerBox.size()); - for (size_t a = 0; a < checkerBox.size(); ++a) { - restore_box[a] = checkerBox[a] + static_cast(region.tl() + innerRegion.tl()); - } - checker->setBox(restore_box); - { - cv::AutoLock lock(mtx); - m_checkers.push_back(checker); - } - } - } -#ifdef MCC_DEBUG - }, - 1); //Run only one thread in debug mode -#else - }); -#endif - } - } - } - // As a failsafe try the classical method - if (m_checkers.empty()) - { - return _no_net_process(image, chartType, nc, params, regionsOfInterest); - } - //remove too close detections - removeTooCloseDetections(params); - - m_checkers.resize(min(nc, (int)m_checkers.size())); - - return !m_checkers.empty(); -} - - -//Overload for the above function -bool CCheckerDetectorImpl:: - process(InputArray image, const TYPECHART chartType, - const int nc /*= 1*/, bool useNet /*=false*/, const Ptr ¶ms) -{ - return process(image, chartType, std::vector(1, Rect(0, 0, image.cols(), image.rows())), - nc,useNet, params); -} - - -void CCheckerDetectorImpl:: - prepareImage(InputArray bgr, OutputArray grayOut, - OutputArray bgrOut, float &aspOut, - const Ptr ¶ms) const -{ - - int min_size; - cv::Size size = bgr.size(); - aspOut = 1; - bgr.copyTo(bgrOut); - - // Resize image - min_size = std::min(size.width, size.height); - if (params->minImageSize > min_size) - { - aspOut = (float)params->minImageSize / min_size; - cv::resize(bgr, bgrOut, cv::Size(int(size.width * aspOut), int(size.height * aspOut)), INTER_LINEAR_EXACT); - } - - // Convert to grayscale - cv::cvtColor(bgrOut, grayOut, COLOR_BGR2GRAY); - - // PDiamel: wiener adaptative methods to minimize the noise effets - // by illumination - - CWienerFilter filter; - filter.wiener2(grayOut, grayOut, 5, 5); - - //JLeandro: perform morphological open on the equalized image - //to minimize the noise effects by CLAHE and to even intensities - //inside the MCC patches (regions) - - cv::Mat strelbox = cv::getStructuringElement(cv::MORPH_RECT, Size(5, 5)); - cv::morphologyEx(grayOut, grayOut, MORPH_OPEN, strelbox); -} - -void CCheckerDetectorImpl:: - performThreshold(InputArray grayscaleImg, - OutputArrayOfArrays thresholdImgs, - const Ptr ¶ms) const -{ - // number of window sizes (scales) to apply adaptive thresholding - int nScales = (params->adaptiveThreshWinSizeMax - params->adaptiveThreshWinSizeMin) / params->adaptiveThreshWinSizeStep + 1; - thresholdImgs.create(nScales, 1, CV_8U); - std::vector _thresholdImgs(nScales); - parallel_for_(Range(0, nScales),[&](const Range& range) { - const int start = range.start; - const int end = range.end; - for (int i = start; i < end; i++) { - int currScale = params->adaptiveThreshWinSizeMin + i * params->adaptiveThreshWinSizeStep; - cv::Mat tempThresholdImg; - cv::adaptiveThreshold(grayscaleImg, tempThresholdImg, 255, ADAPTIVE_THRESH_MEAN_C, - THRESH_BINARY_INV, currScale, params->adaptiveThreshConstant); - _thresholdImgs[i] = tempThresholdImg; - } - }); - - thresholdImgs.assign(_thresholdImgs); -} - -void CCheckerDetectorImpl:: - findContours( - InputArray srcImg, - ContoursVector &contours, - const Ptr ¶ms) const -{ - // contour detected - // [Suzuki85] Suzuki, S. and Abe, K., Topological Structural Analysis of Digitized - // Binary Images by Border Following. CVGIP 30 1, pp 32-46 (1985) - ContoursVector allContours; - cv::findContours(srcImg, allContours, RETR_LIST, CHAIN_APPROX_NONE); - - //select contours - contours.clear(); - - const long long int srcImgArea = srcImg.rows() * srcImg.cols(); - for (size_t i = 0; i < allContours.size(); i++) - { - - PointsVector contour; - contour = allContours[i]; - - int contourSize = (int)contour.size(); - if (contourSize <= params->minContourPointsAllowed) - continue; - - double area = cv::contourArea(contour); - // double perm = cv::arcLength(contour, true); - - if (this->net_used && area / srcImgArea < params->minContoursAreaRate) - continue; - - if (!this->net_used && area < params->minContoursArea) - continue; - // Circularity factor condition - // KORDECKI, A., & PALUS, H. (2014). Automatic detection of colour charts in images. - // Przegl?d Elektrotechniczny, 90(9), 197-202. - // 0.65 < \frac{4*pi*A}{P^2} < 0.97 - // double Cf = 4 * CV_PI * area / (perm * perm); - // if (Cf < 0.5 || Cf > 0.97) continue; - - // Soliditys - // This measure is proposed in this work. - PointsVector hull; - cv::convexHull(contour, hull); - double area_hull = cv::contourArea(hull); - double S = area / area_hull; - if (S < params->minContourSolidity) - continue; - - // Texture analysis - // ... - - contours.push_back(allContours[i]); - } -} - -void CCheckerDetectorImpl:: - findCandidates( - const ContoursVector &contours, - std::vector &detectedCharts, - const Ptr ¶ms) -{ - std::vector approxCurve; - std::vector possibleCharts; - - // For each contour, analyze if it is a parallelepiped likely to be the chart - for (size_t i = 0; i < contours.size(); i++) - { - // Approximate to a polygon - // It uses the Douglas-Peucker algorithm - // http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm - double eps = contours[i].size() * params->findCandidatesApproxPolyDPEpsMultiplier; - cv::approxPolyDP(contours[i], approxCurve, eps, true); - - // We interested only in polygons that contains only four points - if (approxCurve.size() != 4) - continue; - - // And they have to be convex - if (!cv::isContourConvex(approxCurve)) - continue; - - // Ensure that the distance between consecutive points is large enough - float minDist = INFINITY; - - for (size_t j = 0; j < 4; j++) - { - cv::Point side = approxCurve[j] - approxCurve[(j + 1) % 4]; - float squaredSideLength = (float)side.dot(side); - minDist = std::min(minDist, squaredSideLength); - } - - // Check that distance is not very small - if (minDist < params->minContourLengthAllowed) - continue; - - // All tests are passed. Save chart candidate: - CChart chart; - - std::vector corners(4); - for (int j = 0; j < 4; j++) - corners[j] = cv::Point2f((float)approxCurve[j].x, (float)approxCurve[j].y); - chart.setCorners(corners); - - possibleCharts.push_back(chart); - } - - // Remove these elements which corners are too close to each other. - // Eliminate overlaps!!! - // First detect candidates for removal: - std::vector> tooNearCandidates; - for (int i = 0; i < (int)possibleCharts.size(); i++) - { - const CChart &m1 = possibleCharts[i]; - - //calculate the average distance of each corner to the nearest corner of the other chart candidate - for (int j = i + 1; j < (int)possibleCharts.size(); j++) - { - const CChart &m2 = possibleCharts[j]; - - float distSquared = 0; - - for (int c = 0; c < 4; c++) - { - cv::Point v = m1.corners[c] - m2.corners[c]; - distSquared += v.dot(v); - } - - distSquared /= 4; - - if (distSquared < params->minInterContourDistance) - { - tooNearCandidates.push_back(std::pair(i, j)); - } - } - } - - // Mark for removal the element of the pair with smaller perimeter - std::vector removalMask(possibleCharts.size(), false); - - for (size_t i = 0; i < tooNearCandidates.size(); i++) - { - float p1 = perimeter(possibleCharts[tooNearCandidates[i].first].corners); - float p2 = perimeter(possibleCharts[tooNearCandidates[i].second].corners); - - size_t removalIndex; - if (p1 > p2) - removalIndex = tooNearCandidates[i].second; - else - removalIndex = tooNearCandidates[i].first; - - removalMask[removalIndex] = true; - } - - // Return candidates - detectedCharts.clear(); - for (size_t i = 0; i < possibleCharts.size(); i++) - { - if (removalMask[i]) - continue; - detectedCharts.push_back(possibleCharts[i]); - } -} - -void CCheckerDetectorImpl:: - clustersAnalysis( - const std::vector &detectedCharts, - std::vector &groups, - const Ptr ¶ms) -{ - size_t N = detectedCharts.size(); - std::vector X(N); - std::vector B0(N), W(N); - std::vector G; - - CChart chart; - double b0; - for (size_t i = 0; i < N; i++) - { - chart = detectedCharts[i]; - b0 = chart.large_side * params->B0factor; - X[i] = chart.center; - W[i] = chart.area; - B0[i] = b0; - } - - CB0cluster bocluster; - bocluster.setVertex(X); - bocluster.setWeight(W); - bocluster.setB0(B0); - bocluster.group(); - bocluster.getGroup(G); - groups = G; -} - -void CCheckerDetectorImpl:: - checkerRecognize( - InputArray img, - const std::vector &detectedCharts, - const std::vector &G, - const TYPECHART chartType, - std::vector> &colorChartsOut, - const Ptr ¶ms) -{ - std::vector gU; - unique(G, gU); - size_t Nc = gU.size(); //numero de grupos - size_t Ncc = detectedCharts.size(); //numero de charts - - std::vector> colorCharts; - - for (size_t g = 0; g < Nc; g++) - { - - ///------------------------------------------------- - /// selecionar grupo i-esimo - - std::vector chartSub; - for (size_t i = 0; i < Ncc; i++) - if (G[i] == (int)g) - chartSub.push_back(detectedCharts[i]); - - size_t Nsc = chartSub.size(); - if (Nsc < params->minGroupSize) - continue; - - ///------------------------------------------------- - /// min box estimation - - CBoundMin bm; - std::vector points; - - bm.setCharts(chartSub); - bm.calculate(); - bm.getCorners(points); - - // boundary condition - if (points.size() == 0) - continue; - - // sort the points in anti-clockwise order - polyanticlockwise(points); - - ///------------------------------------------------- - /// box projective transformation - - // get physical char box model - std::vector chartPhy; - get_subbox_chart_physical(points, chartPhy); - - // Find the perspective transformation that brings current chart to rectangular form - Matx33f ccT = cv::getPerspectiveTransform(points, chartPhy); - - // transformer - std::vector c(Nsc), ct; - std::vector ch(4 * Nsc), cht; - - for (size_t i = 0; i < Nsc; i++) - { - - CChart cc = chartSub[i]; - for (size_t j = 0; j < 4; j++) - ch[i * 4 + j] = cc.corners[j]; - c[i] = chartSub[i].center; - } - - transform_points_forward(ccT, c, ct); - transform_points_forward(ccT, ch, cht); - - float wchart = 0, hchart = 0; - std::vector cx(Nsc), cy(Nsc); - for (size_t i = 0, k = 0; i < Nsc; i++) - { - k = i * 4; - cv::Point2f v1 = cht[k + 1] - cht[k + 0]; - cv::Point2f v2 = cht[k + 3] - cht[k + 0]; - wchart += (float)norm(v1); - hchart += (float)norm(v2); - cx[i] = ct[i].x; - cy[i] = ct[i].y; - } - - wchart /= Nsc; - hchart /= Nsc; - - ///------------------------------------------------- - /// centers and color estimate - - float tolx = wchart / 2, toly = hchart / 2; - std::vector cxr, cyr; - reduce_array(cx, cxr, tolx); - reduce_array(cy, cyr, toly); - - if (cxr.size() == 1 || cyr.size() == 1) //no information can be extracted if \ - //only one row or columns in present - continue; - // color and center rectificate - cv::Size2i colorSize = cv::Size2i((int)cxr.size(), (int)cyr.size()); - cv::Mat colorMat(colorSize, CV_32FC3); - std::vector cte(colorSize.area()); - - int k = 0; - - for (int i = 0; i < colorSize.height; i++) - { - for (int j = 0; j < colorSize.width; j++) - { - cv::Point2f vc = cv::Point2f(cxr[j], cyr[i]); - cte[k] = vc; - - // recovery color - cv::Point2f cti; - cv::Matx31f p, xt; - - p(0, 0) = vc.x; - p(1, 0) = vc.y; - p(2, 0) = 1; - xt = ccT.inv() * p; - cti.x = xt(0, 0) / xt(2, 0); - cti.y = xt(1, 0) / xt(2, 0); - - // color - int x, y; - x = (int)cti.x; - y = (int)cti.y; - Vec3f &srgb = colorMat.at(i, j); - Vec3b rgb; - if (0 <= y && y < img.rows() && 0 <= x && x < img.cols()) - rgb = img.getMat().at(y, x); - - srgb[0] = (float)rgb[0] / 255; - srgb[1] = (float)rgb[1] / 255; - srgb[2] = (float)rgb[2] / 255; - - k++; - } - } - - CChartModel::SUBCCMModel scm; - scm.centers = cte; - scm.color_size = colorSize; - colorMat = colorMat.t(); - scm.sub_chart = colorMat.reshape(3, colorSize.area()); - - ///------------------------------------------------- - - // color chart model - CChartModel cccm(chartType); - - int iTheta; // rotation angle of chart - int offset; // offset - float error; // min error - if (!cccm.evaluate(scm, offset, iTheta, error)) - continue; - if (iTheta >= 4) - cccm.flip(); - - for (int i = 0; i < iTheta % 4; i++) - cccm.rotate90(); - - ///------------------------------------------------- - /// calculate coordanate - - cv::Size2i dim = cccm.size; - std::vector center = cccm.center; - std::vector box = cccm.box; - int cols = dim.height - colorSize.width + 1; - - int x = (offset) / cols; - int y = (offset) % cols; - - // seleccionar sub grid centers of model - std::vector ctss(colorSize.area()); - cv::Point2f point_ac = cv::Point2f(0, 0); - int p = 0; - - for (int i = x; i < (x + colorSize.height); i++) - { - for (int j = y; j < (y + colorSize.width); j++) - { - int iter = i * dim.height + j; - ctss[p] = center[iter]; - point_ac += ctss[p]; - p++; - } - } - // is colineal point - if (point_ac.x == ctss[0].x * p || point_ac.y == ctss[0].y * p) - continue; - // Find the perspective transformation - cv::Matx33f ccTe = cv::findHomography(ctss, cte); - - std::vector tbox, ibox; - transform_points_forward(ccTe, box, tbox); - transform_points_inverse(ccT, tbox, ibox); - - // sort the points in anti-clockwise order - if (iTheta < 4) - mcc::polyanticlockwise(ibox); - else - mcc::polyclockwise(ibox); - // circshift(ibox, 4 - iTheta); - colorCharts.push_back(ibox); - } - - // return - colorChartsOut = colorCharts; -} - -void CCheckerDetectorImpl:: - checkerAnalysis( - InputArray img_f, - const TYPECHART chartType, - const unsigned int nc, - const std::vector> &colorCharts, - std::vector> &checkers, - float asp, - const Ptr ¶ms, - const cv::Mat &img_rgb_org, - const cv::Mat &img_ycbcr_org, - std::vector &rgb_planes, - std::vector &ycbcr_planes) -{ - size_t N; - std::vector ibox; - - // color chart classic model - CChartModel cccm(chartType); - cv::Mat lab; - cccm.copyToColorMat(lab, 0); - lab = lab.reshape(3, lab.size().area()); - lab /= 255; - - cv::Mat mask(img_f.size(), CV_8U); - mask.setTo(Scalar::all(0)); - - N = colorCharts.size(); - std::vector J(N); - for (size_t i = 0; i < N; i++) - { - ibox = colorCharts[i]; - J[i] = cost_function(img_f, mask, lab, ibox, chartType); - } - - std::vector idx; - sort(J, idx); - float invAsp = 1 / asp; - size_t n = cv::min(nc, (unsigned)N); - checkers.clear(); - - for (size_t i = 0; i < n; i++) - { - ibox = colorCharts[idx[i]]; - - if (J[i] > params->maxError) - continue; - - // redimention box - for (size_t j = 0; j < 4; j++) - ibox[j] = invAsp * ibox[j]; - - cv::Mat charts_rgb, charts_ycbcr; - get_profile(ibox, chartType, charts_rgb, charts_ycbcr, img_rgb_org, - img_ycbcr_org, rgb_planes, ycbcr_planes); - - // result - Ptr checker = CChecker::create(); - checker->setBox(ibox); - checker->setTarget(chartType); - checker->setChartsRGB(charts_rgb); - checker->setChartsYCbCr(charts_ycbcr); - checker->setCenter(mace_center(ibox)); - checker->setCost(J[i]); - - checkers.push_back(checker); - } -} - -void CCheckerDetectorImpl:: - removeTooCloseDetections(const Ptr ¶ms) -{ - // Remove these elements which corners are too close to each other. - // Eliminate overlaps!!! - // First detect candidates for removal: - std::vector> tooNearCandidates; - for (int i = 0; i < (int)m_checkers.size(); i++) - { - const Ptr &m1 = m_checkers[i]; - - //calculate the average distance of each corner to the nearest corner of the other chart candidate - for (int j = i + 1; j < (int)m_checkers.size(); j++) - { - const Ptr &m2 = m_checkers[j]; - - float distSquared = 0; - - for (int c = 0; c < 4; c++) - { - cv::Point v = m1->getBox()[c] - m2->getBox()[c]; - distSquared += v.dot(v); - } - - distSquared /= 4; - - if (distSquared < params->minInterCheckerDistance) - { - tooNearCandidates.push_back(std::pair(i, j)); - } - } - } - - // Mark for removal the element of the pair with smaller cost - std::vector removalMask(m_checkers.size(), false); - - for (size_t i = 0; i < tooNearCandidates.size(); i++) - { - float p1 = m_checkers[tooNearCandidates[i].first]->getCost(); - float p2 = m_checkers[tooNearCandidates[i].second]->getCost(); - - size_t removalIndex; - if (p1 < p2) - removalIndex = tooNearCandidates[i].second; - else - removalIndex = tooNearCandidates[i].first; - - removalMask[removalIndex] = true; - } - - std::vector> copy_m_checkers = m_checkers; - m_checkers.clear(); - - for (size_t i = 0; i < copy_m_checkers.size(); i++) - { - if (removalMask[i]) - continue; - m_checkers.push_back(copy_m_checkers[i]); - } - - sort( m_checkers.begin(), m_checkers.end(), - [&](const Ptr &a, const Ptr &b) - { - return a->getCost() < b->getCost(); - }); -} - -void CCheckerDetectorImpl:: - get_subbox_chart_physical(const std::vector &points, std::vector &chartPhy) -{ - float w, h; - cv::Point2f v1 = points[1] - points[0]; - cv::Point2f v2 = points[3] - points[0]; - float asp = (float)(norm(v2) / norm(v1)); - - w = 100; - h = (float)floor(100 * asp + 0.5); - - chartPhy.clear(); - chartPhy.resize(4); - chartPhy[0] = cv::Point2f(0, 0); - chartPhy[1] = cv::Point2f(w, 0); - chartPhy[2] = cv::Point2f(w, h); - chartPhy[3] = cv::Point2f(0, h); -} - -void CCheckerDetectorImpl:: - reduce_array(const std::vector &x, std::vector &x_new, float tol) -{ - size_t n = x.size(), nn; - std::vector xx = x; - x_new.clear(); - - // sort array - std::sort(xx.begin(), xx.end()); - - // label array - std::vector label(n); - for (size_t i = 0; i < n; i++) - label[i] = abs(xx[(n + i - 1) % n] - xx[i]) > tol; - - // diff array - for (size_t i = 1; i < n; i++) - label[i] += label[i - 1]; - - // unique array - std::vector ulabel; - unique(label, ulabel); - - // mean for group - nn = ulabel.size(); - x_new.resize(nn); - for (size_t i = 0; i < nn; i++) - { - float mu = 0, s = 0; - for (size_t j = 0; j < n; j++) - { - mu += (label[j] == ulabel[i]) * xx[j]; - s += (label[j] == ulabel[i]); - } - x_new[i] = mu / s; - } - - // diff array - std::vector dif(nn - 1); - for (size_t i = 0; i < nn - 1; i++) - dif[i] = (x_new[(i + 1) % nn] - x_new[i]); - - // max and idx - float fmax = 0; - size_t idx = 0; - for (size_t i = 0; i < nn - 1; i++) - if (fmax < dif[i]) - { - fmax = dif[i]; - idx = i; - } - - // add ... X[i] MAX X[i+] ... - if (fmax > 4 * tol) - x_new.insert(x_new.begin() + idx + 1, (x_new[idx] + x_new[idx + 1]) / 2); -} - -void CCheckerDetectorImpl:: - transform_points_inverse(InputArray T, const std::vector &X, std::vector &Xt) -{ - cv::Matx33f _T = T.getMat(); - cv::Matx33f Tinv = _T.inv(); - transform_points_forward(Tinv, X, Xt); -} -void CCheckerDetectorImpl:: - get_profile( - const std::vector &ibox, - const TYPECHART chartType, - OutputArray charts_rgb, - OutputArray charts_ycbcr, - InputArray im_rgb, - InputArray im_ycbcr, - std::vector &rgb_planes, - std::vector &ycbcr_planes) -{ - // color chart classic model - CChartModel cccm(chartType); - cv::Mat lab; - size_t N; - std::vector fbox = cccm.box; - std::vector cellchart = cccm.cellchart; - - // tranformation - Matx33f ccT = cv::getPerspectiveTransform(fbox, ibox); - - cv::Mat mask(im_rgb.size(), CV_8U); - mask.setTo(Scalar::all(0)); - std::vector bch(4), bcht(4); - N = cellchart.size() / 4; - - // Create table charts information - // |p_size|average|stddev|max|min| - // RGB | | | | | | - // YCbCr | - - Mat _charts_rgb = cv::Mat(cv::Size(5, 3 * (int)N), CV_64F); - Mat _charts_ycbcr = cv::Mat(cv::Size(5, 3 * (int)N), CV_64F); - - cv::Scalar mu_rgb, st_rgb, mu_ycb, st_ycb, p_size; - double max_rgb[3], min_rgb[3], max_ycb[3], min_ycb[3]; - - for (int i = 0, k; i < (int)N; i++) - { - k = 4 * i; - bch[0] = cellchart[k + 0]; - bch[1] = cellchart[k + 1]; - bch[2] = cellchart[k + 2]; - bch[3] = cellchart[k + 3]; - polyanticlockwise(bch); - transform_points_forward(ccT, bch, bcht); - - cv::Point2f c(0, 0); - for (int j = 0; j < 4; j++) - c += bcht[j]; - c /= 4; - for (size_t j = 0; j < 4; j++) - bcht[j] = ((bcht[j] - c) * 0.50) + c; - - Rect roi = poly2mask(bcht, im_rgb.size(), mask); - Mat submask = mask(roi); - p_size = cv::sum(submask); - - // rgb space - cv::meanStdDev(im_rgb.getMat()(roi), mu_rgb, st_rgb, submask); - cv::minMaxLoc(rgb_planes[0](roi), &min_rgb[0], &max_rgb[0], NULL, NULL, submask); - cv::minMaxLoc(rgb_planes[1](roi), &min_rgb[1], &max_rgb[1], NULL, NULL, submask); - cv::minMaxLoc(rgb_planes[2](roi), &min_rgb[2], &max_rgb[2], NULL, NULL, submask); - - // create tabla - //|p_size|average|stddev|max|min| - // raw_r - _charts_rgb.at(3 * i + 0, 0) = p_size(0); - _charts_rgb.at(3 * i + 0, 1) = mu_rgb(0); - _charts_rgb.at(3 * i + 0, 2) = st_rgb(0); - _charts_rgb.at(3 * i + 0, 3) = min_rgb[0]; - _charts_rgb.at(3 * i + 0, 4) = max_rgb[0]; - // raw_g - _charts_rgb.at(3 * i + 1, 0) = p_size(0); - _charts_rgb.at(3 * i + 1, 1) = mu_rgb(1); - _charts_rgb.at(3 * i + 1, 2) = st_rgb(1); - _charts_rgb.at(3 * i + 1, 3) = min_rgb[1]; - _charts_rgb.at(3 * i + 1, 4) = max_rgb[1]; - // raw_b - _charts_rgb.at(3 * i + 2, 0) = p_size(0); - _charts_rgb.at(3 * i + 2, 1) = mu_rgb(2); - _charts_rgb.at(3 * i + 2, 2) = st_rgb(2); - _charts_rgb.at(3 * i + 2, 3) = min_rgb[2]; - _charts_rgb.at(3 * i + 2, 4) = max_rgb[2]; - - // YCbCr space - cv::meanStdDev(im_ycbcr.getMat()(roi), mu_ycb, st_ycb, submask); - cv::minMaxLoc(ycbcr_planes[0](roi), &min_ycb[0], &max_ycb[0], NULL, NULL, submask); - cv::minMaxLoc(ycbcr_planes[1](roi), &min_ycb[1], &max_ycb[1], NULL, NULL, submask); - cv::minMaxLoc(ycbcr_planes[2](roi), &min_ycb[2], &max_ycb[2], NULL, NULL, submask); - - // create tabla - //|p_size|average|stddev|max|min| - // raw_Y - _charts_ycbcr.at(3 * i + 0, 0) = p_size(0); - _charts_ycbcr.at(3 * i + 0, 1) = mu_ycb(0); - _charts_ycbcr.at(3 * i + 0, 2) = st_ycb(0); - _charts_ycbcr.at(3 * i + 0, 3) = min_ycb[0]; - _charts_ycbcr.at(3 * i + 0, 4) = max_ycb[0]; - // raw_Cb - _charts_ycbcr.at(3 * i + 1, 0) = p_size(0); - _charts_ycbcr.at(3 * i + 1, 1) = mu_ycb(1); - _charts_ycbcr.at(3 * i + 1, 2) = st_ycb(1); - _charts_ycbcr.at(3 * i + 1, 3) = min_ycb[1]; - _charts_ycbcr.at(3 * i + 1, 4) = max_ycb[1]; - // raw_Cr - _charts_ycbcr.at(3 * i + 2, 0) = p_size(0); - _charts_ycbcr.at(3 * i + 2, 1) = mu_ycb(2); - _charts_ycbcr.at(3 * i + 2, 2) = st_ycb(2); - _charts_ycbcr.at(3 * i + 2, 3) = min_ycb[2]; - _charts_ycbcr.at(3 * i + 2, 4) = max_ycb[2]; - - submask.setTo(Scalar::all(0)); - } - charts_rgb.assign(_charts_rgb); - charts_ycbcr.assign(_charts_ycbcr); -} - -float CCheckerDetectorImpl:: - cost_function(InputArray im_rgb, InputOutputArray mask, InputArray lab, - const std::vector &ibox, const TYPECHART chartType) -{ - CChartModel cccm(chartType); - std::vector fbox = cccm.box; - std::vector cellchart = cccm.cellchart; - - // tranformation - Matx33f ccT = cv::getPerspectiveTransform(fbox, ibox); - std::vector bch(4), bcht(4); - - int N = (int)(cellchart.size() / 4); - - cv::Mat _lab = lab.getMat(); - cv::Mat _im_rgb = im_rgb.getMat(); - - float ec = 0, es = 0; - for (int i = 0, k; i < N; i++) - { - cv::Vec3f r = _lab.at(i); - - k = 4 * i; - bch[0] = cellchart[k + 0]; - bch[1] = cellchart[k + 1]; - bch[2] = cellchart[k + 2]; - bch[3] = cellchart[k + 3]; - polyanticlockwise(bch); - transform_points_forward(ccT, bch, bcht); - - cv::Point2f c(0, 0); - for (int j = 0; j < 4; j++) - c += bcht[j]; - c /= 4; - for (int j = 0; j < 4; j++) - bcht[j] = ((bcht[j] - c) * 0.75) + c; - - cv::Scalar mu, st; - Rect roi = poly2mask(bcht, _im_rgb.size(), mask); - if (!roi.empty()) - { - Mat submask = mask.getMat()(roi); - cv::meanStdDev(_im_rgb(roi), mu, st, submask); - submask.setTo(Scalar::all(0)); - - // cos error - float costh; - costh = (float)(mu.dot(cv::Scalar(r)) / (norm(mu) * norm(r) + FLT_EPSILON)); - ec += (1 - (1 + costh) / 2); - - // standar desviation - es += (float)st.dot(st); - } - } - - // J = arg min ec + es - float J = ec + es; - return J / N; -} - -} // namespace mcc -} // namespace cv \ No newline at end of file diff --git a/modules/mcc/src/checker_detector.hpp b/modules/mcc/src/checker_detector.hpp deleted file mode 100644 index 4c922b5d1d4..00000000000 --- a/modules/mcc/src/checker_detector.hpp +++ /dev/null @@ -1,201 +0,0 @@ -// This file is part of OpenCV project. -// It is subject to the license terms in the LICENSE file found in the top-level directory -// of this distribution and at http://opencv.org/license.html. - -/* - * MIT License - * - * Copyright (c) 2018 Pedro Diamel Marrero Fernández - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to deal - * in the Software without restriction, including without limitation the rights - * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell - * copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ - -#ifndef _MCC_CHECKER_DETECTOR_HPP -#define _MCC_CHECKER_DETECTOR_HPP - -#include "opencv2/mcc.hpp" -#include "charts.hpp" - -namespace cv -{ -namespace mcc -{ - -class CCheckerDetectorImpl : public CCheckerDetector -{ - - typedef std::vector PointsVector; - typedef std::vector ContoursVector; - -public: - CCheckerDetectorImpl(); - virtual ~CCheckerDetectorImpl(); - - bool setNet(cv::dnn::Net _net) CV_OVERRIDE; - - bool process(InputArray image, const TYPECHART chartType, - const std::vector ®ionsOfInterest, - const int nc = 1, bool use_net = false, - const Ptr ¶ms = DetectorParameters::create()) CV_OVERRIDE; - - bool process(InputArray image, const TYPECHART chartType, - const int nc = 1, bool use_net = false, - const Ptr ¶ms = DetectorParameters::create()) CV_OVERRIDE; - - Ptr getBestColorChecker() CV_OVERRIDE - { - if (m_checkers.size()) - return m_checkers[0]; - return nullptr; - } - - std::vector> getListColorChecker() CV_OVERRIDE - { - return m_checkers; - } - -protected: // methods pipeline - bool _no_net_process(InputArray image, const TYPECHART chartType, - const int nc, - const Ptr ¶ms, - std::vector regionsOfInterest); - /// prepareImage - /** \brief Prepare Image - * \param[in] bgrMat image in color space BGR - * \param[out] grayOut gray scale - * \param[out] bgrOut rescale image - * \param[out] aspOut aspect ratio - * \param[in] max_size rescale factor in max dim - */ - virtual void - prepareImage(InputArray bgr, OutputArray grayOut, OutputArray bgrOut, float &aspOut, const Ptr ¶ms) const; - - /// performThreshold - /** \brief Adaptative threshold - * \param[in] grayscaleImg gray scale image - * \param[in] thresholdImg binary image - * \param[in] wndx, wndy windows size - * \param[in] step - */ - virtual void - performThreshold(InputArray grayscaleImg, OutputArrayOfArrays thresholdImg, const Ptr ¶ms) const; - - /// findContours - /** \brief find contour in the image - * \param[in] srcImg binary imagen - * \param[out] contours - * \param[in] minContourPointsAllowed - */ - virtual void - findContours(InputArray srcImg, ContoursVector &contours, const Ptr ¶ms) const; - - /// findCandidates - /** \brief find posibel candidates - * \param[in] contours - * \param[out] detectedCharts - * \param[in] minContourLengthAllowed - */ - virtual void - findCandidates(const ContoursVector &contours, std::vector &detectedCharts, const Ptr ¶ms); - - /// clustersAnalysis - /** \brief clusters charts analysis - * \param[in] detectedCharts - * \param[out] groups - */ - virtual void - clustersAnalysis(const std::vector &detectedCharts, std::vector &groups, const Ptr ¶ms); - - /// checkerRecognize - /** \brief checker color recognition - * \param[in] img - * \param[in] detectedCharts - * \param[in] G - * \param[out] colorChartsOut - */ - virtual void - checkerRecognize(InputArray img, const std::vector &detectedCharts, const std::vector &G, - const TYPECHART chartType, std::vector> &colorChartsOut, - const Ptr ¶ms); - - /// checkerAnalysis - /** \brief evaluate checker - * \param[in] img - * \param[in] img_org - * \param[in] colorCharts - * \param[out] checker - * \param[in] asp - */ - virtual void - checkerAnalysis(InputArray img_rgb_f, - const TYPECHART chartType, const unsigned int nc, - const std::vector> &colorCharts, - std::vector> &checkers, float asp, - const Ptr ¶ms, - const cv::Mat &img_rgb_org, - const cv::Mat &img_ycbcr_org, - std::vector &rgb_planes, - std::vector &ycbcr_planes); - - virtual void - removeTooCloseDetections(const Ptr ¶ms); - -protected: - std::vector> m_checkers; - dnn::Net net; - bool net_used = false; - -private: // methods aux - void get_subbox_chart_physical( - const std::vector &points, - std::vector &chartPhy); - - void reduce_array( - const std::vector &x, - std::vector &x_new, - float tol); - - void transform_points_inverse( - InputArray T, - const std::vector &X, - std::vector &Xt); - - void get_profile( - const std::vector &ibox, - const TYPECHART chartType, - OutputArray charts_rgb, - OutputArray charts_ycbcr, - InputArray im_rgb, - InputArray im_ycbcr, - std::vector &rgb_planes, - std::vector &ycbcr_planes); - - /* \brief cost function - * e(p) = ||f(p)||^2 = \sum_k (mu_{k,p}*r_k')/||mu_{k,p}||||r_k|| + ... - * + \sum_k || \sigma_{k,p} ||^2 - */ - float cost_function(InputArray img, InputOutputArray mask, InputArray lab, - const std::vector &ibox, - const TYPECHART chartType); -}; - -} // namespace mcc -} // namespace cv - -#endif //_MCC_CHECKER_DETECTOR_HPP diff --git a/modules/mcc/src/checker_model.cpp b/modules/mcc/src/checker_model.cpp deleted file mode 100644 index 310ed8baf96..00000000000 --- a/modules/mcc/src/checker_model.cpp +++ /dev/null @@ -1,507 +0,0 @@ -// This file is part of OpenCV project. -// It is subject to the license terms in the LICENSE file found in the top-level directory -// of this distribution and at http://opencv.org/license.html. - -/* - * MIT License - * - * Copyright (c) 2018 Pedro Diamel Marrero Fernández - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to deal - * in the Software without restriction, including without limitation the rights - * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell - * copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ - -#include "precomp.hpp" - -#include "checker_model.hpp" -#include "dictionary.hpp" - -namespace cv -{ -namespace mcc -{ - -/////////////////////////////////////////////////////////////////////////////// -/// CChartModel -CChartModel::CChartModel(const TYPECHART chartType) -{ - switch (chartType) - { - case MCC24: //Standard - size = cv::Size2i(4, 6); - boxsize = cv::Size2f(11.25, 16.75); - box.resize(4); - box[0] = cv::Point2f(0.00, 0.00); - box[1] = cv::Point2f(16.75, 0.00); - box[2] = cv::Point2f(16.75, 11.25); - box[3] = cv::Point2f(0.00, 11.25); - - cellchart.assign(CChartClassicModelCellchart, CChartClassicModelCellchart + 4 * 24); - center.assign(CChartClassicModelCenter, CChartClassicModelCenter + 24); - - chart.resize(size.area(), std::vector(9)); - for(int color = 0 ; color < (int)chart.size() ; color++) - chart[color].assign(CChartClassicModelColors[color] , CChartClassicModelColors[color] + 9 ); - - break; - case SG140: //DigitalSG - size = cv::Size2i(10, 14); - boxsize = cv::Size2f(27.75, 38.75); - box.resize(4); - box[0] = cv::Point2f(0.00, 0.00); - box[1] = cv::Point2f(38.75, 0.00); - box[2] = cv::Point2f(38.75, 27.75); - box[3] = cv::Point2f(0.00, 27.75); - - cellchart.assign(CChartDigitalSGCellchart, CChartDigitalSGCellchart + 4 * 140); - center.assign(CChartDigitalSGCenter, CChartDigitalSGCenter + 140); - - chart.resize(size.area(), std::vector(9)); - for(int color = 0 ; color < (int)chart.size() ; color++) - chart[color].assign(CChartDigitalSGColors[color] , CChartDigitalSGColors[color] + 9 ); - - break; - case VINYL18: //Vinyl - size = cv::Size2i(3, 6); - boxsize = cv::Size2f(12.50, 18.25); - box.resize(4); - box[0] = cv::Point2f(0.00, 0.00); - box[1] = cv::Point2f(18.25, 0.00); - box[2] = cv::Point2f(18.25, 12.50); - box[3] = cv::Point2f(0.00, 12.50); - - cellchart.assign(CChartVinylCellchart, CChartVinylCellchart + 4 * 18); - center.assign(CChartVinylCenter, CChartVinylCenter + 18); - - chart.resize(size.area(), std::vector(9)); - for(int color = 0 ; color < (int)chart.size() ; color++) - chart[color].assign(CChartVinylColors[color] , CChartVinylColors[color] + 9 ); - - break; - } -} - -CChartModel::~CChartModel() -{ -} - -bool CChartModel:: - evaluate(const SUBCCMModel &subModel, int &offset, int &iTheta, float &error) -{ - - float tError; - int tTheta, tOffset; - error = INFINITY; - bool beval = false; - - // para todas las orientaciones - // min_{ theta,dt } | CC_e - CC | - for (tTheta = 0; tTheta < 8; tTheta++) - { - if (match(subModel, tTheta, tError, tOffset) && tError < error) - { - error = tError; - iTheta = tTheta; - offset = tOffset; - beval = true; - } - } - - return beval; -} - -void CChartModel:: - copyToColorMat(OutputArray lab, int cs) -{ - size_t N, M, k; - - N = size.width; - M = size.height; - cv::Mat im_lab_org((int)N, (int)M, CV_32FC3); - int type_color = 3 * cs; - k = 0; - - for (size_t i = 0; i < N; i++) - { - for (size_t j = 0; j < M; j++) - { - cv::Vec3f &lab_values = im_lab_org.at((int)i, (int)j); - lab_values[0] = chart[k][type_color + 0]; - lab_values[1] = chart[k][type_color + 1]; - lab_values[2] = chart[k][type_color + 2]; - k++; - } - } - - lab.assign(im_lab_org); -} - -void mcc::CChartModel:: - rotate90() -{ - - size = cv::Size2i(size.height, size.width); - - //the matrix is roated clockwise 90 degree, so first row will become last column, second row second last column and so on - //doing this inplace will make the code a bit hard to read, so creating a temporary array - - std::vector _cellchart(cellchart.size()); - std::vector _center(center.size()); - - int k = 0; - for (int i = 0; i < size.width; i++) - { - for (int j = 0; j < size.height; j++) - { - //k contains the new coordintes, - int old_i = size.height - j - 1; - int old_j = i; - int old_k = (old_i)*size.width + old_j; - - _cellchart[4 * k + 0] = cellchart[4 * old_k + 3]; - _cellchart[4 * k + 1] = cellchart[4 * old_k + 0]; - _cellchart[4 * k + 2] = cellchart[4 * old_k + 1]; - _cellchart[4 * k + 3] = cellchart[4 * old_k + 2]; - - // center - _center[k] = center[old_k]; - k++; - } - } - cellchart = _cellchart; - center = _center; - - boxsize = cv::Size2f(boxsize.height, boxsize.width); -} - -void mcc::CChartModel:: - flip() -{ - - std::vector _cellchart(cellchart.size()); - std::vector _center(center.size()); - - int k = 0; - for (int i = 0; i < size.width; i++) - { - for (int j = 0; j < size.height; j++) - { - //k contains the new coordintes, - int old_i = i; - int old_j = size.height - j - 1; - int old_k = (old_i)*size.height + old_j; - - _cellchart[4 * k + 0] = cellchart[4 * old_k + 1]; - _cellchart[4 * k + 1] = cellchart[4 * old_k + 0]; - _cellchart[4 * k + 2] = cellchart[4 * old_k + 3]; - _cellchart[4 * k + 3] = cellchart[4 * old_k + 2]; - - // center - _center[k] = center[old_k]; - k++; - } - } - cellchart = _cellchart; - center = _center; -} - -float CChartModel:: - dist_color_lab(InputArray lab1, InputArray lab2) -{ - - int N = lab1.rows(); - float dist = 0, dist_i; - - Mat _lab1 = lab1.getMat(), _lab2 = lab2.getMat(); - for (int i = 0; i < N; i++) - { - cv::Vec3f v1 = _lab1.at(i, 0); - cv::Vec3f v2 = _lab2.at(i, 0); - // v1[0] = 1; - // v2[0] = 1; // L <- 0 - - // euclidean - cv::Vec3f v = v1 - v2; - dist_i = v.dot(v); - dist += sqrt(dist_i); - - // cosine - //float costh = v1.dot(v2) / (norm(v1)*norm(v2)); - //dist += 1 - (1 + costh) / 2; - } - - dist /= N; - return dist; -} - -bool CChartModel:: - match(const SUBCCMModel &subModel, int iTheta, float &error, int &ierror) -{ - - size_t N, M, k; - - N = size.width; - M = size.height; - cv::Mat im_lab_org((int)N, (int)M, CV_32FC3); - int type_color = 3; - k = 0; - - for (size_t i = 0; i < N; i++) - { - for (size_t j = 0; j < M; j++) - { - cv::Vec3f &lab = im_lab_org.at((int)i, (int)j); - lab[0] = chart[k][type_color + 0]; - lab[1] = chart[k][type_color + 1]; - lab[2] = chart[k][type_color + 2]; - k++; - } - } - - rot90(im_lab_org, iTheta); - N = im_lab_org.rows; - M = im_lab_org.cols; - - size_t n, m; - n = subModel.color_size.height; - m = subModel.color_size.width; - - // boundary condition - if (N < n || M < m) - return false; - - // rgb to La*b* - cv::Mat rgb_est = subModel.sub_chart; - cv::Mat lab_est; - - // RGB color space - //cv::cvtColor(rgb_est, lab_est, COLOR_BGR2RGB); - - // Lab color space - //rgb_est *= 1/255; - cv::cvtColor(rgb_est, lab_est, COLOR_BGR2Lab); - - size_t nN, mM; - nN = N - n + 1; - mM = M - m + 1; - std::vector lEcm(nN * mM); - k = 0; - for (size_t i = 0; i < nN; i++) - { - for (size_t j = 0; j < mM; j++) - { - cv::Mat lab_curr, lab_roi; - lab_roi = im_lab_org(cv::Rect((int)j, (int)i, (int)m, (int)n)); - lab_roi.copyTo(lab_curr); - lab_curr = lab_curr.t(); - lab_curr = lab_curr.reshape(3, (int)n * (int)m); - - // Mean squared error - // ECM = 1 / N sum_i(Y - Yp) ^ 2 - lEcm[k] = dist_color_lab(lab_curr, lab_est) / (M * N); - k++; - } - } - - // minimo - error = lEcm[0]; - ierror = 0; - for (int i = 1; i < (int)lEcm.size(); i++) - if (error > lEcm[i]) - { - error = lEcm[i]; - ierror = i; - } - - return true; -} - -void CChartModel:: - rot90(InputOutputArray mat, int itheta) -{ - - //1=CW, 2=CCW, 3=180 - switch (itheta) - { - case 1: //transpose+flip(1)=CW - transpose(mat, mat); - cv::flip(mat, mat, 1); - break; - case 2: //flip(-1)=180 - cv::flip(mat, mat, -1); - break; - case 3: //transpose+flip(0)=CCW - transpose(mat, mat); - cv::flip(mat, mat, 0); - break; - //flipped images start here - case 4: //flip(1)=no rotation, just flipped - cv::flip(mat, mat, 1); - break; - case 5: //flip(1)+transpose + flip(1)=CW - cv::flip(mat, mat, 1); - transpose(mat, mat); - cv::flip(mat, mat, 1); - break; - case 6: //flip(1)+flip(-1)=180 - cv::flip(mat, mat, 1); - cv::flip(mat, mat, -1); - break; - case 7: //flip(1)+transpose+flip(0)=CCW - cv::flip(mat, mat, 1); - transpose(mat, mat); - cv::flip(mat, mat, 0); - break; - } -} - -////////////////////////////////////////////////////////////////////////////////////////////// -// // CChecker - -Ptr CChecker::create() -{ - return makePtr(); -} - -void CCheckerImpl::setTarget(TYPECHART _target) -{ - target = _target; -} -void CCheckerImpl::setBox(std::vector _box) -{ - box = _box; -} -void CCheckerImpl::setChartsRGB(Mat _chartsRGB) -{ - chartsRGB = _chartsRGB; -} -void CCheckerImpl::setChartsYCbCr(Mat _chartsYCbCr) -{ - chartsYCbCr = _chartsYCbCr; -} -void CCheckerImpl::setCost(float _cost) -{ - cost = _cost; -} -void CCheckerImpl::setCenter(Point2f _center) -{ - center = _center; -} - -TYPECHART CCheckerImpl::getTarget() -{ - return target; -} -std::vector CCheckerImpl::getBox() -{ - return box; -} -std::vector CCheckerImpl::getColorCharts() -{ - // color chart classic model - CChartModel cccm(getTarget()); - Mat lab; - size_t N; - std::vector fbox = cccm.box; - std::vector cellchart = cccm.cellchart; - std::vector charts(cellchart.size()); - - // tranformation - Matx33f ccT = getPerspectiveTransform(fbox, getBox()); - - std::vector bch(4), bcht(4); - N = cellchart.size() / 4; - for (size_t i = 0, k; i < N; i++) - { - k = 4 * i; - for (size_t j = 0ull; j < 4ull; j++) - bch[j] = cellchart[k + j]; - - polyanticlockwise(bch); - transform_points_forward(ccT, bch, bcht); - - Point2f c(0, 0); - for (size_t j = 0; j < 4; j++) - c += bcht[j]; - c /= 4; - for (size_t j = 0ull; j < 4ull; j++) - charts[k+j] = ((bcht[j] - c) * 0.50) + c; - } - return charts; -} -Mat CCheckerImpl::getChartsRGB() -{ - return chartsRGB; -} -Mat CCheckerImpl::getChartsYCbCr() -{ - return chartsYCbCr; -} -float CCheckerImpl::getCost() -{ - return cost; -} -Point2f CCheckerImpl::getCenter() -{ - return center; -} - -////////////////////////////////////////////////////////////////////////////////////////////// -// CheckerDraw -Ptr CCheckerDraw::create(Ptr pChecker, cv::Scalar color /*= CV_RGB(0,250,0)*/, int thickness /*=2*/) -{ - return makePtr(pChecker, color, thickness); -} - -void CCheckerDrawImpl::draw(InputOutputArray img) -{ - std::vector charts = m_pChecker->getColorCharts(); - size_t N = charts.size() / 4; - for (size_t i = 0, k; i < N; i++) - { - k = 4 * i; - for (size_t j = 0; j < 4; j++) - cv::line(img, charts[k+j], charts[k+((j + 1) % 4)], m_color, m_thickness, LINE_AA); - } -} - -void transform_points_forward(const Matx33f& T, const std::vector &X, std::vector &Xt) -{ - size_t N = X.size(); - if (Xt.size() != N) - Xt.resize(N); - std::fill(Xt.begin(), Xt.end(), Point2f(0.f, 0.f)); - if (N == 0) - return; - - Matx31f p, xt; - Point2f pt; - for (size_t i = 0; i < N; i++) - { - p(0, 0) = X[i].x; - p(1, 0) = X[i].y; - p(2, 0) = 1; - xt = T * p; - pt.x = xt(0, 0) / xt(2, 0); - pt.y = xt(1, 0) / xt(2, 0); - Xt[i] = pt; - } -} - -} // namespace mcc -} // namespace cv diff --git a/modules/mcc/src/checker_model.hpp b/modules/mcc/src/checker_model.hpp deleted file mode 100644 index 4f116a8bdf5..00000000000 --- a/modules/mcc/src/checker_model.hpp +++ /dev/null @@ -1,185 +0,0 @@ -// This file is part of OpenCV project. -// It is subject to the license terms in the LICENSE file found in the top-level directory -// of this distribution and at http://opencv.org/license.html. - -/* - * MIT License - * - * Copyright (c) 2018 Pedro Diamel Marrero Fernández - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to deal - * in the Software without restriction, including without limitation the rights - * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell - * copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ - -#ifndef _MCC_CHECKER_MODEL_HPP -#define _MCC_CHECKER_MODEL_HPP - -namespace cv -{ -namespace mcc -{ - -//! @addtogroup mcc -//! @{ - -/** CChartModel - * - * @brief Class for handing the different chart models. - * - * This class contains the variables and functions which are specific - * to a given chart type and will be used for it detections. - - */ - -class CChartModel -{ - -public: - /** SUBCCMModel - * - * @brief Information about a continuous subregion of the chart. - * - * Usually not all the cells of the chart can be detected by the - * detector. This submodel contains the information about the - * detected squares. - */ - - typedef struct - _SUBCCMModel - { - - cv::Mat sub_chart; - cv::Size2i color_size; - std::vector centers; - - } SUBCCMModel; - -public: - CChartModel(const TYPECHART chartType); - ~CChartModel(); - - /** @brief evaluate submodel in this checker type*/ - bool evaluate(const SUBCCMModel &subModel, int &offset, int &iTheta, float &error); - - // function utils - - void copyToColorMat(OutputArray lab, int cs = 0); - void rotate90(); - void flip(); - -public: - // Cie L*a*b* values use illuminant D50 2 degree observer sRGB values for - // for iluminante D65. - - cv::Size2i size; - cv::Size2f boxsize; - std::vector box; - std::vector cellchart; - std::vector center; - std::vector> chart; - -protected: - /** \brief match checker color - * \param[in] subModel sub-checker - * \param[in] iTheta angle - * \param[out] error - * \param[out] ierror - * \return state - */ - bool match(const SUBCCMModel &subModel, int iTheta, float &error, int &ierror); - - /** \brief euclidian dist L2 for Lab space - * \note - * \f$ \sum_i \sqrt (\sum_k (ab1-ab2)_k.^2) \f$ - * \param[in] lab1 - * \param[in] lab2 - * \return distance - */ - float dist_color_lab(InputArray lab1, InputArray lab2); - - /** \brief rotate matrix 90 degree */ - void rot90(InputOutputArray mat, int itheta); -}; -/** CChecker - * - * \brief checker model - * \author Pedro Marrero Fernandez - * - */ -class CCheckerImpl : public CChecker -{ -public: -public: - CCheckerImpl() {} - ~CCheckerImpl() {} - - void setTarget(TYPECHART _target) CV_OVERRIDE; - void setBox(std::vector _box) CV_OVERRIDE; - void setChartsRGB(Mat _chartsRGB) CV_OVERRIDE; - void setChartsYCbCr(Mat _chartsYCbCr) CV_OVERRIDE; - void setCost(float _cost) CV_OVERRIDE; - void setCenter(Point2f _center) CV_OVERRIDE; - - TYPECHART getTarget() CV_OVERRIDE; - std::vector getBox() CV_OVERRIDE; - std::vector getColorCharts() CV_OVERRIDE; - Mat getChartsRGB() CV_OVERRIDE; - Mat getChartsYCbCr() CV_OVERRIDE; - float getCost() CV_OVERRIDE; - Point2f getCenter() CV_OVERRIDE; - -private: - TYPECHART target; ///< type of checkercolor - std::vector box; ///< positions of the corners - cv::Mat chartsRGB; ///< charts profile in rgb color space - cv::Mat chartsYCbCr; ///< charts profile in YCbCr color space - float cost; ///< cost to aproximate - cv::Point2f center; ///< center of the chart. -}; - -////////////////////////////////////////////////////////////////////////////////////////////// -// CheckerDraw - -/** \brief checker draw - * \author Pedro Marrero Fernandez - */ -class CCheckerDrawImpl : public CCheckerDraw -{ - -public: - CCheckerDrawImpl(Ptr pChecker, cv::Scalar color = CV_RGB(0, 250, 0), int thickness = 2) - : m_pChecker(pChecker), m_color(color), m_thickness(thickness) - { - CV_Assert(pChecker); - } - - void draw(InputOutputArray img) CV_OVERRIDE; - -private: - Ptr m_pChecker; - cv::Scalar m_color; - int m_thickness; -}; -// @} - -void transform_points_forward(const Matx33f& T, const std::vector &X, std::vector &Xt); - -} // namespace mcc -} // namespace cv - -#endif //_MCC_CHECKER_MODEL_HPP diff --git a/modules/mcc/src/color.hpp b/modules/mcc/src/color.hpp index 57ead3558c7..858fd428010 100644 --- a/modules/mcc/src/color.hpp +++ b/modules/mcc/src/color.hpp @@ -25,12 +25,12 @@ // Jinheng Zhang // Chenqi Shan -#ifndef __OPENCV_MCC_COLOR_HPP__ -#define __OPENCV_MCC_COLOR_HPP__ +#ifndef __OPENCV_CCM_COLOR_HPP__ +#define __OPENCV_CCM_COLOR_HPP__ #include "distance.hpp" #include "colorspace.hpp" -#include "opencv2/mcc/ccm.hpp" +#include "opencv2/ccm.hpp" namespace cv { namespace ccm { diff --git a/modules/mcc/src/colorspace.hpp b/modules/mcc/src/colorspace.hpp index 572fea38781..f4e70c36ddb 100644 --- a/modules/mcc/src/colorspace.hpp +++ b/modules/mcc/src/colorspace.hpp @@ -25,12 +25,12 @@ // Jinheng Zhang // Chenqi Shan -#ifndef __OPENCV_MCC_COLORSPACE_HPP__ -#define __OPENCV_MCC_COLORSPACE_HPP__ +#ifndef __OPENCV_CCM_COLORSPACE_HPP__ +#define __OPENCV_CCM_COLORSPACE_HPP__ #include "operations.hpp" #include "io.hpp" -#include "opencv2/mcc/ccm.hpp" +#include "opencv2/ccm.hpp" namespace cv { namespace ccm { diff --git a/modules/mcc/src/common.cpp b/modules/mcc/src/common.cpp deleted file mode 100644 index 1f44273202c..00000000000 --- a/modules/mcc/src/common.cpp +++ /dev/null @@ -1,115 +0,0 @@ -// This file is part of OpenCV project. -// It is subject to the license terms in the LICENSE file found in the top-level directory -// of this distribution and at http://opencv.org/license.html. - -/* - * MIT License - * - * Copyright (c) 2018 Pedro Diamel Marrero Fernández - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to deal - * in the Software without restriction, including without limitation the rights - * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell - * copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ - -#include "precomp.hpp" -#include "common.hpp" - -namespace cv -{ -namespace mcc -{ -Rect poly2mask(const std::vector &poly, cv::Size size, InputOutputArray mask) -{ - // Create black image with the same size as the original - //mask.create(size, CV_8UC1); - //mask.setTo(Scalar::all(0)); - - // Create Polygon from vertices - std::vector roi_poly; - approxPolyDP(poly, roi_poly, 1.0, true); - - Rect roi = boundingRect(roi_poly); - - // Fill polygon white - fillConvexPoly(mask, &roi_poly[0], (int)roi_poly.size(), 1, 8, 0); - - roi &= Rect(0, 0, size.width, size.height); - if (roi.empty()) - roi = Rect(0, 0, 1, 1); - return roi; -} - -float perimeter(const std::vector &ps) -{ - float sum = 0, dx, dy; - - for (size_t i = 0; i < ps.size(); i++) - { - int i2 = (i + 1) % (int)ps.size(); - - dx = ps[i].x - ps[i2].x; - dy = ps[i].y - ps[i2].y; - - sum += sqrt(dx * dx + dy * dy); - } - - return sum; -} - -cv::Point2f -mace_center(const std::vector &ps) -{ - cv::Point2f center; - int n; - - center = cv::Point2f(0); - n = (int)ps.size(); - for (int i = 0; i < n; i++) - center += ps[i]; - center /= n; - - return center; -} - -void polyanticlockwise(std::vector &points) -{ - // Sort the points in anti-clockwise order - // Trace a line between the first and second point. - // If the third point is at the right side, then the points are anti-clockwise - cv::Point2f v1 = points[1] - points[0]; - cv::Point2f v2 = points[2] - points[0]; - - //if the third point is in the left side, then sort in anti-clockwise order - if ((v1.x * v2.y) - (v1.y * v2.x) < 0.0) - std::swap(points[1], points[3]); -} -void polyclockwise(std::vector &points) -{ - // Sort the points in clockwise order - // Trace a line between the first and second point. - // If the third point is at the right side, then the points are clockwise - cv::Point2f v1 = points[1] - points[0]; - cv::Point2f v2 = points[2] - points[0]; - - //if the third point is in the left side, then sort in clockwise order - if ((v1.x * v2.y) - (v1.y * v2.x) > 0.0) - std::swap(points[1], points[3]); -} - -} // namespace mcc -} // namespace cv diff --git a/modules/mcc/src/common.hpp b/modules/mcc/src/common.hpp deleted file mode 100644 index 998f8a4c51f..00000000000 --- a/modules/mcc/src/common.hpp +++ /dev/null @@ -1,133 +0,0 @@ -// This file is part of OpenCV project. -// It is subject to the license terms in the LICENSE file found in the top-level directory -// of this distribution and at http://opencv.org/license.html. - -/* - * MIT License - * - * Copyright (c) 2018 Pedro Diamel Marrero Fernández - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to deal - * in the Software without restriction, including without limitation the rights - * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell - * copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ - -#ifndef _MCC_COMMON_HPP -#define _MCC_COMMON_HPP - -namespace cv -{ -namespace mcc -{ - -Rect poly2mask(const std::vector &poly, Size size, InputOutputArray mask); - -template -void circshift(std::vector &A, int shiff) -{ - if (A.empty() || shiff < 1) - return; - int n = A.size(); - - if (shiff >= n) - return; - - std::vector Tmp(n); - for (int i = shiff; i < n + shiff; i++) - Tmp[(i % n)] = A[i - shiff]; - - A = Tmp; -} - -float perimeter(const std::vector &ps); - -cv::Point2f mace_center(const std::vector &ps); - -template -void unique(const std::vector &A, std::vector &U) -{ - - int n = (int)A.size(); - std::vector Tm = A; - - std::sort(Tm.begin(), Tm.end()); - - U.clear(); - U.push_back(Tm[0]); - for (int i = 1; i < n; i++) - if (Tm[i] != Tm[i - 1]) - U.push_back(Tm[i]); -} - -void polyanticlockwise(std::vector &points); -void polyclockwise(std::vector &points); - -// Does lexical cast of the input argument to string -template -std::string ToString(const T &value) -{ - std::ostringstream stream; - stream << value; - return stream.str(); -} - -template -void change(T &a, T &b) -{ - T c = a; - a = b; - b = c; -} - -template -void sort(std::vector &A, std::vector &idx, bool ord = true) -{ - size_t N = A.size(); - if (N == 0) - return; - - idx.clear(); - idx.resize(N); - for (size_t i = 0; i < N; i++) - idx[i] = (int)i; - - for (size_t i = 0; i < N - 1; i++) - { - - size_t k = i; - T valor = A[i]; - for (size_t j = i + 1; j < N; j++) - { - if ((A[j] < valor && ord) || (A[j] > valor && !ord)) - { - valor = A[j]; - k = j; - } - } - - if (k == i) - continue; - - change(A[i], A[k]); - change(idx[i], idx[k]); - } -} - -} // namespace mcc -} // namespace cv - -#endif //_MCC_COMMON_HPP diff --git a/modules/mcc/src/debug.cpp b/modules/mcc/src/debug.cpp deleted file mode 100644 index 3d5650f0182..00000000000 --- a/modules/mcc/src/debug.cpp +++ /dev/null @@ -1,68 +0,0 @@ -// This file is part of OpenCV project. -// It is subject to the license terms in the LICENSE file found in the top-level directory -// of this distribution and at http://opencv.org/license.html. - -/* - * MIT License - * - * Copyright (c) 2018 Pedro Diamel Marrero Fernández - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to deal - * in the Software without restriction, including without limitation the rights - * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell - * copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ - -#include "precomp.hpp" -#include "debug.hpp" - -#ifdef MCC_DEBUG - -#include - -namespace cv -{ -namespace mcc -{ -cv::Scalar randomcolor(RNG &rng) -{ - int icolor = (unsigned)rng; - return Scalar(icolor & 255, (icolor >> 8) & 255, (icolor >> 16) & 255); -} - -void imshow_250xN(const std::string &name_, InputArray patch) -{ - - cv::Mat bigpatch; - cv::Size size = patch.size(); - float asp = (float)size.height / size.width; - int new_size = 550; - cv::resize(patch, bigpatch, cv::Size((int)new_size, int(new_size * asp))); - cv::imshow(name_, bigpatch); -} - -void showAndSave(std::string name, InputArray m, std::string path) -{ - imshow_250xN(name, m); - cv::imwrite(path + "/" + name + ".png", m); - if (waitKey(0) == 'q') - return; -} - -} // namespace mcc -} // namespace cv - -#endif diff --git a/modules/mcc/src/debug.hpp b/modules/mcc/src/debug.hpp deleted file mode 100644 index ec4e52589e4..00000000000 --- a/modules/mcc/src/debug.hpp +++ /dev/null @@ -1,50 +0,0 @@ -// This file is part of OpenCV project. -// It is subject to the license terms in the LICENSE file found in the top-level directory -// of this distribution and at http://opencv.org/license.html. - -/* - * MIT License - * - * Copyright (c) 2018 Pedro Diamel Marrero Fernández - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to deal - * in the Software without restriction, including without limitation the rights - * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell - * copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ - -#ifndef _MCC_DEBUG_HPP -#define _MCC_DEBUG_HPP - -#include "opencv2/mcc.hpp" -#ifdef MCC_DEBUG - -namespace cv -{ -namespace mcc -{ - -cv::Scalar randomcolor(RNG &rng); - -void imshow_250xN(const std::string &name_, InputArray patch); - -void showAndSave(std::string name, InputArray m, std::string path); -} // namespace mcc -} // namespace cv - -#endif - -#endif //_MCC_DEBUG_HPP diff --git a/modules/mcc/src/dictionary.hpp b/modules/mcc/src/dictionary.hpp deleted file mode 100644 index bae15146314..00000000000 --- a/modules/mcc/src/dictionary.hpp +++ /dev/null @@ -1,1187 +0,0 @@ -// This file is part of OpenCV project. -// It is subject to the license terms in the LICENSE file found in the top-level directory -// of this distribution and at http://opencv.org/license.html. - -/* - * MIT License - * - * Copyright (c) 2018 Pedro Diamel Marrero Fernández - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to deal - * in the Software without restriction, including without limitation the rights - * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell - * copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ - -#ifndef _MCC_DICTIONARY_HPP -#define _MCC_DICTIONARY_HPP - - - -namespace cv -{ -namespace mcc -{ -/////////////////////////////////////////////////////////////////////////////// -/// CChartClassicModel -const float CChartClassicModelColors[24][9] = { - - // sRGB CIE L*a*b* Munsell Notation - // --------------- ------------------------ Hue Value / Chroma - // R G B L* a* b* - {115.0f, 82.0f, 68.0f, 37.986f, 13.555f, 14.059f, 3.00f, 3.70f, 3.2f}, //1. dark shin - {194.0f, 150.0f, 130.0f, 65.711f, 18.130f, 17.810f, 2.20f, 6.47f, 4.1f}, //2. light skin - {98.0f, 122.0f, 157.0f, 49.927f, -4.880f, -21.925f, 4.30f, 4.95f, 5.0f}, //3. blue skin - {87.0f, 108.0f, 67.0f, 43.139f, -13.095f, 21.905f, 6.70f, 4.20f, 4.1f}, //4. foliage - {133.0f, 128.0f, 177.0f, 55.112f, 8.844f, -25.399f, 9.70f, 5.47f, 6.7f}, //5. blue flower - {103.0f, 189.0f, 170.0f, 70.719f, -33.395f, 0.199f, 2.50f, 7.00f, 6.0f}, //6. bluish green - {214.0f, 126.0f, 44.0f, 62.661f, 36.067f, 57.096f, 5.00f, 6.00f, 11.0f}, //7. orange - {80.0f, 91.0f, 166.0f, 40.020f, 10.410f, -45.964f, 7.50f, 4.00f, 10.7f}, //8. purplish blue - {193.0f, 90.0f, 99.0f, 51.124f, 48.239f, 16.248f, 2.50f, 5.00f, 10.0f}, //9. moderate red - {94.0f, 60.0f, 108.0f, 30.325f, 22.976f, -21.587f, 5.00f, 3.00f, 7.0f}, //10. purple - {157.0f, 188.0f, 64.0f, 72.532f, -23.709f, 57.255f, 5.00f, 7.10f, 9.1f}, //11. yelow green - {224.0f, 163.0f, 46.0f, 71.941f, 19.363f, 67.857f, 10.00f, 7.00f, 10.5f}, //12. orange yellow - {56.0f, 61.0f, 150.0f, 28.778f, 14.179f, -50.297f, 7.50f, 2.90f, 12.7f}, //13. blue - {70.0f, 148.0f, 73.0f, 55.261f, -38.342f, 31.370f, 0.25f, 5.40f, 8.65f}, //14. green - {175.0f, 54.0f, 60.0f, 42.101f, 53.378f, 28.190f, 5.00f, 4.00f, 12.0f}, //15. red - {231.0f, 199.0f, 31.0f, 81.733f, 4.039f, 79.819f, 5.00f, 8.00f, 11.1f}, //16. yellow - {187.0f, 86.0f, 149.0f, 51.935f, 49.986f, -14.574f, 2.50f, 5.00f, 12.0f}, //17. magenta - {8.0f, 133.0f, 161.0f, 51.038f, -28.631f, -28.638f, 5.00f, 5.00f, 8.0f}, //18. cyan - {243.0f, 243.0f, 242.0f, 96.539f, -0.425f, 1.186f, 0.00f, 9.50f, 0.0f}, //19. white(.05*) - {200.0f, 200.0f, 200.0f, 81.257f, -0.638f, -0.335f, 0.00f, 8.00f, 0.0f}, //20. neutral 8(.23*) - {160.0f, 160.0f, 160.0f, 66.766f, -0.734f, -0.504f, 0.00f, 6.50f, 0.0f}, //21. neutral 6.5(.44*) - {122.0f, 122.0f, 121.0f, 50.867f, -0.153f, -0.270f, 0.00f, 5.00f, 0.0f}, //22. neutral 5(.70*) - {85.0f, 85.0f, 85.0f, 35.656f, -0.421f, -1.231f, 0.00f, 3.50f, 0.0f}, //23. neutral 3.5(.1.05*) - {52.0f, 52.0f, 52.0f, 20.461f, -0.079f, -0.973f, 0.00f, 2.00f, 0.0f}, //24. black(1.50*) - -}; - -const cv::Point2f CChartClassicModelCellchart[96] = { - {0.25f, 0.25f}, - {2.75f, 0.25f}, - {2.75f, 2.75f}, - {0.25f, 2.75f}, - {3.00f, 0.25f}, - {5.50f, 0.25f}, - {5.50f, 2.75f}, - {3.00f, 2.75f}, - {5.75f, 0.25f}, - {8.25f, 0.25f}, - {8.25f, 2.75f}, - {5.75f, 2.75f}, - {8.50f, 0.25f}, - {11.00f, 0.25f}, - {11.00f, 2.75f}, - {8.50f, 2.75f}, - {11.25f, 0.25f}, - {13.75f, 0.25f}, - {13.75f, 2.75f}, - {11.25f, 2.75f}, - {14.00f, 0.25f}, - {16.50f, 0.25f}, - {16.50f, 2.75f}, - {14.00f, 2.75f}, - {0.25f, 3.00f}, - {2.75f, 3.00f}, - {2.75f, 5.50f}, - {0.25f, 5.50f}, - {3.00f, 3.00f}, - {5.50f, 3.00f}, - {5.50f, 5.50f}, - {3.00f, 5.50f}, - {5.75f, 3.00f}, - {8.25f, 3.00f}, - {8.25f, 5.50f}, - {5.75f, 5.50f}, - {8.50f, 3.00f}, - {11.00f, 3.00f}, - {11.00f, 5.50f}, - {8.50f, 5.50f}, - {11.25f, 3.00f}, - {13.75f, 3.00f}, - {13.75f, 5.50f}, - {11.25f, 5.50f}, - {14.00f, 3.00f}, - {16.50f, 3.00f}, - {16.50f, 5.50f}, - {14.00f, 5.50f}, - {0.25f, 5.75f}, - {2.75f, 5.75f}, - {2.75f, 8.25f}, - {0.25f, 8.25f}, - {3.00f, 5.75f}, - {5.50f, 5.75f}, - {5.50f, 8.25f}, - {3.00f, 8.25f}, - {5.75f, 5.75f}, - {8.25f, 5.75f}, - {8.25f, 8.25f}, - {5.75f, 8.25f}, - {8.50f, 5.75f}, - {11.00f, 5.75f}, - {11.00f, 8.25f}, - {8.50f, 8.25f}, - {11.25f, 5.75f}, - {13.75f, 5.75f}, - {13.75f, 8.25f}, - {11.25f, 8.25f}, - {14.00f, 5.75f}, - {16.50f, 5.75f}, - {16.50f, 8.25f}, - {14.00f, 8.25f}, - {0.25f, 8.50f}, - {2.75f, 8.50f}, - {2.75f, 11.00f}, - {0.25f, 11.00f}, - {3.00f, 8.50f}, - {5.50f, 8.50f}, - {5.50f, 11.00f}, - {3.00f, 11.00f}, - {5.75f, 8.50f}, - {8.25f, 8.50f}, - {8.25f, 11.00f}, - {5.75f, 11.00f}, - {8.50f, 8.50f}, - {11.00f, 8.50f}, - {11.00f, 11.00f}, - {8.50f, 11.00f}, - {11.25f, 8.50f}, - {13.75f, 8.50f}, - {13.75f, 11.00f}, - {11.25f, 11.00f}, - {14.00f, 8.50f}, - {16.50f, 8.50f}, - {16.50f, 11.00f}, - {14.00f, 11.00f}, - -}; - -const cv::Point2f CChartClassicModelCenter[24] = { - {1.50f, 1.50f}, - {4.25f, 1.50f}, - {7.00f, 1.50f}, - {9.75f, 1.50f}, - {12.50f, 1.50f}, - {15.25f, 1.50f}, - {1.50f, 4.25f}, - {4.25f, 4.25f}, - {7.00f, 4.25f}, - {9.75f, 4.25f}, - {12.50f, 4.25f}, - {15.25f, 4.25f}, - {1.50f, 7.00f}, - {4.25f, 7.00f}, - {7.00f, 7.00f}, - {9.75f, 7.00f}, - {12.50f, 7.00f}, - {15.25f, 7.00f}, - {1.50f, 9.75f}, - {4.25f, 9.75f}, - {7.00f, 9.75f}, - {9.75f, 9.75f}, - {12.50f, 9.75f}, - {15.25f, 9.75f}, - -}; - -////////////////////////////////////////////////////////////////////////////////////////////// -/// CChartDigitalSG -const float CChartDigitalSGColors[140][9] = { - - // sRGB CIE L*a*b* Munsell Notation - // --------------- ------------------------ Hue Value / Chroma - // R G B L* a* b* - {243.6785f, 245.5509f, 243.9088f, 96.55f, -0.91f, 0.57f, -1.0f, -1.0f, -1.0f}, - {19.8630f, 20.3003f, 20.8469f, 6.43f, -0.06f, -0.41f, -1.0f, -1.0f, -1.0f}, - {117.8584f, 118.2530f, 118.1025f, 49.7f, -0.18f, 0.03f, -1.0f, -1.0f, -1.0f}, - {243.5942f, 245.3933f, 243.7273f, 96.5f, -0.89f, 0.59f, -1.0f, -1.0f, -1.0f}, - {19.9993f, 20.4566f, 21.0413f, 6.5f, -0.06f, -0.44f, -1.0f, -1.0f, -1.0f}, - {117.7060f, 118.1645f, 118.0348f, 49.66f, -0.2f, 0.01f, -1.0f, -1.0f, -1.0f}, - {243.6013f, 245.4638f, 243.8033f, 96.52f, -0.91f, 0.58f, -1.0f, -1.0f, -1.0f}, - {20.1535f, 20.4065f, 20.7898f, 6.49f, -0.02f, -0.28f, -1.0f, -1.0f, -1.0f}, - {117.8806f, 118.3134f, 118.1353f, 49.72f, -0.2f, 0.04f, -1.0f, -1.0f, -1.0f}, - {243.4242f, 245.1981f, 243.3717f, 96.43f, -0.91f, 0.67f, -1.0f, -1.0f, -1.0f}, - {117.8668f, 118.3107f, 118.2028f, 49.72f, -0.19f, 0.0f, -1.0f, -1.0f, -1.0f}, - {141.3577f, 28.0252f, 95.0288f, 32.6f, 51.58f, -10.85f, -1.0f, -1.0f, -1.0f}, - {177.5963f, 131.1085f, 179.7258f, 60.75f, 26.22f, -18.6f, -1.0f, -1.0f, -1.0f}, - {108.2022f, 30.1190f, 128.8980f, 28.69f, 48.28f, -39.00f, -1.0f, -1.0f, -1.0f}, - {0.0f, 129.2029f, 199.4861f, 49.38f, -15.43f, -48.48f, -1.0f, -1.0f, -1.0f}, - {0.0f, 162.7924f, 191.4749f, 60.63f, -30.77f, -26.23f, -1.0f, -1.0f, -1.0f}, - {0.0f, 56.2386f, 55.1200f, 19.29f, -26.37f, -6.15f, -1.0f, -1.0f, -1.0f}, - {0.0f, 164.6157f, 165.9222f, 60.15f, -41.77f, -12.60f, -1.0f, -1.0f, -1.0f}, - {58.6915f, 50.1355f, 38.5574f, 21.42f, 1.67f, 8.79f, -1.0f, -1.0f, -1.0f}, - {117.7814f, 118.2399f, 118.1103f, 49.69f, -0.2f, 0.01f, -1.0f, -1.0f, -1.0f}, - {19.8846f, 20.4558f, 21.3702f, 6.5f, -0.03f, -0.67f, -1.0f, -1.0f, -1.0f}, - {64.2572f, 43.9020f, 79.5758f, 21.82f, 17.33f, -18.35f, -1.0f, -1.0f, -1.0f}, - {91.6752f, 90.6539f, 159.4087f, 41.53f, 18.48f, -37.26f, -1.0f, -1.0f, -1.0f}, - {0.0f, 51.7097f, 101.8051f, 19.99f, -0.16f, -36.29f, -1.0f, -1.0f, -1.0f}, - {16.4706f, 156.7786f, 199.5879f, 60.16f, -18.45f, -31.42f, -1.0f, -1.0f, -1.0f}, - {0.0f, 56.3863f, 78.4458f, 19.94f, -17.92f, -20.96f, -1.0f, -1.0f, -1.0f}, - {85.8767f, 152.3418f, 203.7400f, 60.68f, -6.05f, -32.81f, -1.0f, -1.0f, -1.0f}, - {0.0f, 141.8412f, 136.0915f, 50.81f, -49.8f, -9.63f, -1.0f, -1.0f, -1.0f}, - {73.4809f, 163.3852f, 108.1566f, 60.65f, -39.77f, 20.76f, -1.0f, -1.0f, -1.0f}, - {20.1214f, 20.5079f, 21.0922f, 6.53f, -0.03f, -0.43f, -1.0f, -1.0f, -1.0f}, - {243.7254f, 245.5782f, 243.8991f, 96.56f, -0.91f, 0.59f, -1.0f, -1.0f, -1.0f}, - {198.0681f, 211.7588f, 225.2718f, 84.19f, -1.95f, -8.23f, -1.0f, -1.0f, -1.0f}, - {239.3827f, 202.2618f, 211.6298f, 84.75f, 14.55f, 0.23f, -1.0f, -1.0f, -1.0f}, - {169.1422f, 222.5039f, 212.7889f, 84.87f, -19.07f, -0.82f, -1.0f, -1.0f, -1.0f}, - {243.3181f, 203.6053f, 200.4170f, 85.15f, 13.48f, 6.82f, -1.0f, -1.0f, -1.0f}, - {209.6511f, 214.2775f, 159.1455f, 84.17f, -10.45f, 26.78f, -1.0f, -1.0f, -1.0f}, - {215.5821f, 125.8663f, 86.0613f, 61.74f, 31.06f, 36.42f, -1.0f, -1.0f, -1.0f}, - {202.3497f, 141.5423f, 123.4314f, 64.37f, 20.82f, 18.92f, -1.0f, -1.0f, -1.0f}, - {0.0f, 140.4951f, 93.3754f, 50.4f, -53.22f, 14.62f, -1.0f, -1.0f, -1.0f}, - {243.6773f, 245.4176f, 243.6408f, 96.51f, -0.89f, 0.65f, -1.0f, -1.0f, -1.0f}, - {117.9409f, 118.3590f, 118.2027f, 49.74f, -0.19f, 0.03f, -1.0f, -1.0f, -1.0f}, - {110.5974f, 62.7615f, 41.3328f, 31.91f, 18.62f, 21.99f, -1.0f, -1.0f, -1.0f}, - {228.7579f, 115.4417f, 0.0f, 60.74f, 38.66f, 70.97f, -1.0f, -1.0f, -1.0f}, - {0.0f, 42.4374f, 135.4228f, 19.35f, 22.23f, -58.86f, -1.0f, -1.0f, -1.0f}, - {243.6376f, 245.4608f, 243.7265f, 96.52f, -0.91f, 0.62f, -1.0f, -1.0f, -1.0f}, - {20.5471f, 20.7706f, 21.1856f, 6.66f, 0.00f, -0.30f, -1.0f, -1.0f, -1.0f}, - {239.4052f, 173.7086f, 147.9643f, 76.51f, 20.81f, 22.72f, -1.0f, -1.0f, -1.0f}, - {241.8648f, 157.2827f, 136.0207f, 72.79f, 29.15f, 24.18f, -1.0f, -1.0f, -1.0f}, - {12.9473f, 61.0106f, 44.3207f, 22.33f, -20.70f, 5.75f, -1.0f, -1.0f, -1.0f}, - {117.8245f, 118.2597f, 118.1357f, 49.7f, -0.19f, 0.01f, -1.0f, -1.0f, -1.0f}, - {19.9625f, 20.5277f, 21.3483f, 6.53f, -0.05f, -0.61f, -1.0f, -1.0f, -1.0f}, - {198.8077f, 139.4916f, 120.4582f, 63.42f, 20.19f, 19.22f, -1.0f, -1.0f, -1.0f}, - {0.0f, 81.2537f, 163.8455f, 34.94f, 11.64f, -50.70f, -1.0f, -1.0f, -1.0f}, - {54.9984f, 141.2109f, 51.9967f, 52.03f, -44.15f, 39.04f, -1.0f, -1.0f, -1.0f}, - {197.1775f, 196.5945f, 197.0767f, 79.43f, 0.29f, -0.17f, -1.0f, -1.0f, -1.0f}, - {71.5553f, 72.2783f, 72.9901f, 30.67f, -0.14f, -0.53f, -1.0f, -1.0f, -1.0f}, - {193.4891f, 143.5716f, 108.3919f, 63.6f, 14.44f, 26.07f, -1.0f, -1.0f, -1.0f}, - {191.7291f, 146.0328f, 126.4483f, 64.37f, 14.50f, 17.05f, -1.0f, -1.0f, -1.0f}, - {9.3958f, 163.8812f, 128.3477f, 60.01f, -44.33f, 8.49f, -1.0f, -1.0f, -1.0f}, - {20.3474f, 20.7197f, 21.3632f, 6.63f, -0.01f, -0.47f, -1.0f, -1.0f, -1.0f}, - {243.6841f, 245.5904f, 243.8984f, 96.56f, -0.93f, 0.59f, -1.0f, -1.0f, -1.0f}, - {67.5763f, 114.3549f, 150.4402f, 46.37f, -5.09f, -24.46f, -1.0f, -1.0f, -1.0f}, - {195.8311f, 65.0081f, 80.2132f, 47.08f, 52.97f, 20.49f, -1.0f, -1.0f, -1.0f}, - {178.5490f, 0.0f, 27.2862f, 36.04f, 64.92f, 38.51f, -1.0f, -1.0f, -1.0f}, - {157.5618f, 157.8520f, 158.3960f, 65.05f, 0.00f, -0.32f, -1.0f, -1.0f, -1.0f}, - {93.9493f, 94.6924f, 95.1781f, 40.14f, -0.19f, -0.38f, -1.0f, -1.0f, -1.0f}, - {141.2464f, 92.1355f, 59.0432f, 43.77f, 16.46f, 27.12f, -1.0f, -1.0f, -1.0f}, - {195.4679f, 144.4185f, 127.4304f, 64.39f, 17.00f, 16.59f, -1.0f, -1.0f, -1.0f}, - {116.6521f, 159.0566f, 69.5398f, 60.79f, -29.74f, 41.50f, -1.0f, -1.0f, -1.0f}, - {243.5820f, 245.3320f, 243.5738f, 96.48f, -0.89f, 0.64f, -1.0f, -1.0f, -1.0f}, - {117.9142f, 118.3962f, 118.2609f, 49.75f, -0.21f, 0.01f, -1.0f, -1.0f, -1.0f}, - {78.3936f, 96.2850f, 37.2418f, 38.18f, -16.99f, 30.87f, -1.0f, -1.0f, -1.0f}, - {72.2142f, 34.3584f, 92.2239f, 21.31f, 29.14f, -27.51f, -1.0f, -1.0f, -1.0f}, - {244.5244f, 193.8503f, 0.0f, 80.57f, 3.85f, 89.61f, -1.0f, -1.0f, -1.0f}, - {117.8475f, 118.2889f, 118.1270f, 49.71f, -0.20f, 0.03f, -1.0f, -1.0f, -1.0f}, - {145.0665f, 145.2389f, 145.9725f, 60.27f, 0.08f, -0.41f, -1.0f, -1.0f, -1.0f}, - {199.9555f, 153.8996f, 134.3363f, 67.34f, 14.45f, 16.90f, -1.0f, -1.0f, -1.0f}, - {197.1786f, 145.1237f, 124.6796f, 64.69f, 16.95f, 18.57f, -1.0f, -1.0f, -1.0f}, - {36.6899f, 140.3283f, 37.0131f, 51.12f, -49.31f, 44.41f, -1.0f, -1.0f, -1.0f}, - {117.8144f, 118.2644f, 118.1186f, 49.7f, -0.20f, 0.02f, -1.0f, -1.0f, -1.0f}, - {20.2541f, 20.8349f, 21.6861f, 6.67f, -0.05f, -0.64f, -1.0f, -1.0f, -1.0f}, - {112.6726f, 119.9236f, 168.6891f, 51.56f, 9.16f, -26.88f, -1.0f, -1.0f, -1.0f}, - {163.7979f, 183.1273f, 39.4915f, 70.83f, -24.26f, 64.77f, -1.0f, -1.0f, -1.0f}, - {187.9194f, 68.6530f, 141.7077f, 48.06f, 55.33f, -15.61f, -1.0f, -1.0f, -1.0f}, - {82.5699f, 82.9620f, 83.2778f, 35.26f, -0.09f, -0.24f, -1.0f, -1.0f, -1.0f}, - {185.3466f, 184.8995f, 185.4040f, 75.16f, 0.25f, -0.20f, -1.0f, -1.0f, -1.0f}, - {158.9114f, 86.2593f, 40.1532f, 44.54f, 26.27f, 38.93f, -1.0f, -1.0f, -1.0f}, - {119.8508f, 73.3212f, 42.4862f, 35.91f, 16.59f, 26.46f, -1.0f, -1.0f, -1.0f}, - {60.8859f, 169.4042f, 57.1272f, 61.49f, -52.73f, 47.30f, -1.0f, -1.0f, -1.0f}, - {20.1742f, 20.6528f, 21.3198f, 6.59f, -0.05f, -0.50f, -1.0f, -1.0f, -1.0f}, - {243.8216f, 245.6282f, 243.9185f, 96.58f, -0.90f, 0.61f, -1.0f, -1.0f, -1.0f}, - {79.7809f, 185.0914f, 167.7500f, 68.93f, -34.58f, -0.34f, -1.0f, -1.0f, -1.0f}, - {232.6743f, 153.8163f, 0.0f, 69.65f, 20.09f, 78.57f, -1.0f, -1.0f, -1.0f}, - {0.0f, 130.0449f, 163.4567f, 47.79f, -33.18f, -30.21f, -1.0f, -1.0f, -1.0f}, - {38.1665f, 39.8882f, 41.3055f, 15.94f, -0.42f, -1.20f, -1.0f, -1.0f, -1.0f}, - {222.3959f, 223.8081f, 224.4490f, 89.02f, -0.36f, -0.48f, -1.0f, -1.0f, -1.0f}, - {209.4225f, 135.2473f, 108.2643f, 63.43f, 25.44f, 26.25f, -1.0f, -1.0f, -1.0f}, - {211.8297f, 143.7736f, 111.0546f, 65.75f, 22.06f, 27.82f, -1.0f, -1.0f, -1.0f}, - {198.7094f, 135.2492f, 55.8580f, 61.47f, 17.10f, 50.72f, -1.0f, -1.0f, -1.0f}, - {243.7438f, 245.4744f, 243.6791f, 96.53f, -0.89f, 0.66f, -1.0f, -1.0f, -1.0f}, - {118.0486f, 118.4902f, 118.3282f, 49.79f, -0.20f, 0.03f, -1.0f, -1.0f, -1.0f}, - {245.4618f, 204.6880f, 180.8277f, 85.17f, 10.89f, 17.26f, -1.0f, -1.0f, -1.0f}, - {196.2073f, 234.5558f, 213.2861f, 89.74f, -16.52f, 6.19f, -1.0f, -1.0f, -1.0f}, - {215.5873f, 208.3601f, 222.5759f, 84.55f, 5.07f, -6.12f, -1.0f, -1.0f, -1.0f}, - {169.8225f, 217.9657f, 225.3475f, 84.02f, -13.87f, -8.72f, -1.0f, -1.0f, -1.0f}, - {172.9317f, 173.0792f, 173.7270f, 70.76f, 0.07f, -0.35f, -1.0f, -1.0f, -1.0f}, - {107.9946f, 107.9158f, 107.5227f, 45.59f, -0.05f, 0.23f, -1.0f, -1.0f, -1.0f}, - {48.8294f, 48.9265f, 49.4057f, 20.3f, 0.07f, -0.32f, -1.0f, -1.0f, -1.0f}, - {154.4353f, 153.9054f, 41.5640f, 61.79f, -13.41f, 55.42f, -1.0f, -1.0f, -1.0f}, - {117.8827f, 118.3094f, 118.1692f, 49.72f, -0.19f, 0.02f, -1.0f, -1.0f, -1.0f}, - {20.6133f, 21.0396f, 21.6157f, 6.77f, -0.05f, -0.44f, -1.0f, -1.0f, -1.0f}, - {98.5619f, 24.5454f, 42.2740f, 21.85f, 34.37f, 7.83f, -1.0f, -1.0f, -1.0f}, - {203.5372f, 4.2888f, 23.0539f, 42.66f, 67.43f, 48.42f, -1.0f, -1.0f, -1.0f}, - {206.9131f, 119.5498f, 140.5764f, 60.33f, 36.56f, 3.56f, -1.0f, -1.0f, -1.0f}, - {215.5830f, 120.8032f, 119.0661f, 61.22f, 36.61f, 17.32f, -1.0f, -1.0f, -1.0f}, - {251.8782f, 103.8825f, 0.0f, 62.07f, 52.80f, 77.14f, -1.0f, -1.0f, -1.0f}, - {197.8463f, 179.7436f, 0.0f, 72.42f, -9.82f, 89.66f, -1.0f, -1.0f, -1.0f}, - {182.0047f, 145.2731f, 40.3520f, 62.03f, 3.53f, 57.01f, -1.0f, -1.0f, -1.0f}, - {163.8131f, 187.4426f, 0.0f, 71.95f, -27.34f, 73.69f, -1.0f, -1.0f, -1.0f}, - {20.2251f, 20.6453f, 21.2489f, 6.59f, -0.04f, -0.45f, -1.0f, -1.0f, -1.0f}, - {118.0243f, 118.4338f, 118.2614f, 49.77f, -0.19f, 0.04f, -1.0f, -1.0f, -1.0f}, - {188.2188f, 31.6548f, 85.2439f, 41.84f, 62.05f, 10.01f, -1.0f, -1.0f, -1.0f}, - {81.8360f, 27.8344f, 59.8794f, 19.78f, 29.16f, -7.85f, -1.0f, -1.0f, -1.0f}, - {190.3670f, 0.0f, 42.9164f, 39.56f, 65.98f, 33.71f, -1.0f, -1.0f, -1.0f}, - {236.3141f, 51.3514f, 46.5787f, 52.39f, 68.33f, 47.84f, -1.0f, -1.0f, -1.0f}, - {276.7517f, 181.6850f, 0.0f, 81.23f, 24.12f, 87.51f, -1.0f, -1.0f, -1.0f}, - {253.7462f, 195.2511f, 0.0f, 81.8f, 6.78f, 95.75f, -1.0f, -1.0f, -1.0f}, - {183.1389f, 181.4049f, 0.0f, 71.72f, -16.23f, 76.28f, -1.0f, -1.0f, -1.0f}, - {74.5051f, 40.0398f, 25.0285f, 20.31f, 14.45f, 16.74f, -1.0f, -1.0f, -1.0f}, - {117.8060f, 118.2068f, 118.0183f, 49.68f, -0.19f, 0.05f, -1.0f, -1.0f, -1.0f}, - {243.6388f, 245.3229f, 243.4973f, 96.48f, -0.88f, 0.68f, -1.0f, -1.0f, -1.0f}, - {117.8333f, 118.2279f, 118.0773f, 49.69f, -0.18f, 0.03f, -1.0f, -1.0f, -1.0f}, - {19.8618f, 20.1973f, 20.6441f, 6.39f, -0.04f, -0.33f, -1.0f, -1.0f, -1.0f}, - {243.7610f, 245.5085f, 243.6882f, 96.54f, -0.90f, 0.67f, -1.0f, -1.0f, -1.0f}, - {117.9245f, 118.3020f, 118.1192f, 49.72f, -0.18f, 0.05f, -1.0f, -1.0f, -1.0f}, - {20.0461f, 20.4187f, 20.9774f, 6.49f, -0.03f, -0.41f, -1.0f, -1.0f, -1.0f}, - {243.6929f, 245.4207f, 243.5636f, 96.51f, -0.90f, 0.69f, -1.0f, -1.0f, -1.0f}, - {117.8721f, 118.2558f, 118.0350f, 49.7f, -0.19f, 0.07f, -1.0f, -1.0f, -1.0f}, - {20.0704f, 20.3587f, 20.8917f, 6.47f, 0.00f, -0.38f, -1.0f, -1.0f, -1.0f}, - {243.5788f, 245.2700f, 243.4010f, 96.46f, -0.89f, 0.7f, -1.0f, -1.0f, -1.0f}, - -}; - -const cv::Point2f CChartDigitalSGCellchart[560] = { - - {0.25f, 0.25f}, - {2.75f, 0.25f}, - {2.75f, 2.75f}, - {0.25f, 2.75f}, - {3.0f, 0.25f}, - {5.5f, 0.25f}, - {5.5f, 2.75f}, - {3.0f, 2.75f}, - {5.75f, 0.25f}, - {8.25f, 0.25f}, - {8.25f, 2.75f}, - {5.75f, 2.75f}, - {8.5f, 0.25f}, - {11.0f, 0.25f}, - {11.0f, 2.75f}, - {8.5f, 2.75f}, - {11.25f, 0.25f}, - {13.75f, 0.25f}, - {13.75f, 2.75f}, - {11.25f, 2.75f}, - {14.0f, 0.25f}, - {16.5f, 0.25f}, - {16.5f, 2.75f}, - {14.0f, 2.75f}, - {16.75f, 0.25f}, - {19.25f, 0.25f}, - {19.25f, 2.75f}, - {16.75f, 2.75f}, - {19.5f, 0.25f}, - {22.0f, 0.25f}, - {22.0f, 2.75f}, - {19.5f, 2.75f}, - {22.25f, 0.25f}, - {24.75f, 0.25f}, - {24.75f, 2.75f}, - {22.25f, 2.75f}, - {25.0f, 0.25f}, - {27.5f, 0.25f}, - {27.5f, 2.75f}, - {25.0f, 2.75f}, - {27.75f, 0.25f}, - {30.25f, 0.25f}, - {30.25f, 2.75f}, - {27.75f, 2.75f}, - {30.5f, 0.25f}, - {33.0f, 0.25f}, - {33.0f, 2.75f}, - {30.5f, 2.75f}, - {33.25f, 0.25f}, - {35.75f, 0.25f}, - {35.75f, 2.75f}, - {33.25f, 2.75f}, - {36.0f, 0.25f}, - {38.5f, 0.25f}, - {38.5f, 2.75f}, - {36.0f, 2.75f}, - {0.25f, 3.0f}, - {2.75f, 3.0f}, - {2.75f, 5.5f}, - {0.25f, 5.5f}, - {3.0f, 3.0f}, - {5.5f, 3.0f}, - {5.5f, 5.5f}, - {3.0f, 5.5f}, - {5.75f, 3.0f}, - {8.25f, 3.0f}, - {8.25f, 5.5f}, - {5.75f, 5.5f}, - {8.5f, 3.0f}, - {11.0f, 3.0f}, - {11.0f, 5.5f}, - {8.5f, 5.5f}, - {11.25f, 3.0f}, - {13.75f, 3.0f}, - {13.75f, 5.5f}, - {11.25f, 5.5f}, - {14.0f, 3.0f}, - {16.5f, 3.0f}, - {16.5f, 5.5f}, - {14.0f, 5.5f}, - {16.75f, 3.0f}, - {19.25f, 3.0f}, - {19.25f, 5.5f}, - {16.75f, 5.5f}, - {19.5f, 3.0f}, - {22.0f, 3.0f}, - {22.0f, 5.5f}, - {19.5f, 5.5f}, - {22.25f, 3.0f}, - {24.75f, 3.0f}, - {24.75f, 5.5f}, - {22.25f, 5.5f}, - {25.0f, 3.0f}, - {27.5f, 3.0f}, - {27.5f, 5.5f}, - {25.0f, 5.5f}, - {27.75f, 3.0f}, - {30.25f, 3.0f}, - {30.25f, 5.5f}, - {27.75f, 5.5f}, - {30.5f, 3.0f}, - {33.0f, 3.0f}, - {33.0f, 5.5f}, - {30.5f, 5.5f}, - {33.25f, 3.0f}, - {35.75f, 3.0f}, - {35.75f, 5.5f}, - {33.25f, 5.5f}, - {36.0f, 3.0f}, - {38.5f, 3.0f}, - {38.5f, 5.5f}, - {36.0f, 5.5f}, - {0.25f, 5.75f}, - {2.75f, 5.75f}, - {2.75f, 8.25f}, - {0.25f, 8.25f}, - {3.0f, 5.75f}, - {5.5f, 5.75f}, - {5.5f, 8.25f}, - {3.0f, 8.25f}, - {5.75f, 5.75f}, - {8.25f, 5.75f}, - {8.25f, 8.25f}, - {5.75f, 8.25f}, - {8.5f, 5.75f}, - {11.0f, 5.75f}, - {11.0f, 8.25f}, - {8.5f, 8.25f}, - {11.25f, 5.75f}, - {13.75f, 5.75f}, - {13.75f, 8.25f}, - {11.25f, 8.25f}, - {14.0f, 5.75f}, - {16.5f, 5.75f}, - {16.5f, 8.25f}, - {14.0f, 8.25f}, - {16.75f, 5.75f}, - {19.25f, 5.75f}, - {19.25f, 8.25f}, - {16.75f, 8.25f}, - {19.5f, 5.75f}, - {22.0f, 5.75f}, - {22.0f, 8.25f}, - {19.5f, 8.25f}, - {22.25f, 5.75f}, - {24.75f, 5.75f}, - {24.75f, 8.25f}, - {22.25f, 8.25f}, - {25.0f, 5.75f}, - {27.5f, 5.75f}, - {27.5f, 8.25f}, - {25.0f, 8.25f}, - {27.75f, 5.75f}, - {30.25f, 5.75f}, - {30.25f, 8.25f}, - {27.75f, 8.25f}, - {30.5f, 5.75f}, - {33.0f, 5.75f}, - {33.0f, 8.25f}, - {30.5f, 8.25f}, - {33.25f, 5.75f}, - {35.75f, 5.75f}, - {35.75f, 8.25f}, - {33.25f, 8.25f}, - {36.0f, 5.75f}, - {38.5f, 5.75f}, - {38.5f, 8.25f}, - {36.0f, 8.25f}, - {0.25f, 8.5f}, - {2.75f, 8.5f}, - {2.75f, 11.0f}, - {0.25f, 11.0f}, - {3.0f, 8.5f}, - {5.5f, 8.5f}, - {5.5f, 11.0f}, - {3.0f, 11.0f}, - {5.75f, 8.5f}, - {8.25f, 8.5f}, - {8.25f, 11.0f}, - {5.75f, 11.0f}, - {8.5f, 8.5f}, - {11.0f, 8.5f}, - {11.0f, 11.0f}, - {8.5f, 11.0f}, - {11.25f, 8.5f}, - {13.75f, 8.5f}, - {13.75f, 11.0f}, - {11.25f, 11.0f}, - {14.0f, 8.5f}, - {16.5f, 8.5f}, - {16.5f, 11.0f}, - {14.0f, 11.0f}, - {16.75f, 8.5f}, - {19.25f, 8.5f}, - {19.25f, 11.0f}, - {16.75f, 11.0f}, - {19.5f, 8.5f}, - {22.0f, 8.5f}, - {22.0f, 11.0f}, - {19.5f, 11.0f}, - {22.25f, 8.5f}, - {24.75f, 8.5f}, - {24.75f, 11.0f}, - {22.25f, 11.0f}, - {25.0f, 8.5f}, - {27.5f, 8.5f}, - {27.5f, 11.0f}, - {25.0f, 11.0f}, - {27.75f, 8.5f}, - {30.25f, 8.5f}, - {30.25f, 11.0f}, - {27.75f, 11.0f}, - {30.5f, 8.5f}, - {33.0f, 8.5f}, - {33.0f, 11.0f}, - {30.5f, 11.0f}, - {33.25f, 8.5f}, - {35.75f, 8.5f}, - {35.75f, 11.0f}, - {33.25f, 11.0f}, - {36.0f, 8.5f}, - {38.5f, 8.5f}, - {38.5f, 11.0f}, - {36.0f, 11.0f}, - {0.25f, 11.25f}, - {2.75f, 11.25f}, - {2.75f, 13.75f}, - {0.25f, 13.75f}, - {3.0f, 11.25f}, - {5.5f, 11.25f}, - {5.5f, 13.75f}, - {3.0f, 13.75f}, - {5.75f, 11.25f}, - {8.25f, 11.25f}, - {8.25f, 13.75f}, - {5.75f, 13.75f}, - {8.5f, 11.25f}, - {11.0f, 11.25f}, - {11.0f, 13.75f}, - {8.5f, 13.75f}, - {11.25f, 11.25f}, - {13.75f, 11.25f}, - {13.75f, 13.75f}, - {11.25f, 13.75f}, - {14.0f, 11.25f}, - {16.5f, 11.25f}, - {16.5f, 13.75f}, - {14.0f, 13.75f}, - {16.75f, 11.25f}, - {19.25f, 11.25f}, - {19.25f, 13.75f}, - {16.75f, 13.75f}, - {19.5f, 11.25f}, - {22.0f, 11.25f}, - {22.0f, 13.75f}, - {19.5f, 13.75f}, - {22.25f, 11.25f}, - {24.75f, 11.25f}, - {24.75f, 13.75f}, - {22.25f, 13.75f}, - {25.0f, 11.25f}, - {27.5f, 11.25f}, - {27.5f, 13.75f}, - {25.0f, 13.75f}, - {27.75f, 11.25f}, - {30.25f, 11.25f}, - {30.25f, 13.75f}, - {27.75f, 13.75f}, - {30.5f, 11.25f}, - {33.0f, 11.25f}, - {33.0f, 13.75f}, - {30.5f, 13.75f}, - {33.25f, 11.25f}, - {35.75f, 11.25f}, - {35.75f, 13.75f}, - {33.25f, 13.75f}, - {36.0f, 11.25f}, - {38.5f, 11.25f}, - {38.5f, 13.75f}, - {36.0f, 13.75f}, - {0.25f, 14.0f}, - {2.75f, 14.0f}, - {2.75f, 16.5f}, - {0.25f, 16.5f}, - {3.0f, 14.0f}, - {5.5f, 14.0f}, - {5.5f, 16.5f}, - {3.0f, 16.5f}, - {5.75f, 14.0f}, - {8.25f, 14.0f}, - {8.25f, 16.5f}, - {5.75f, 16.5f}, - {8.5f, 14.0f}, - {11.0f, 14.0f}, - {11.0f, 16.5f}, - {8.5f, 16.5f}, - {11.25f, 14.0f}, - {13.75f, 14.0f}, - {13.75f, 16.5f}, - {11.25f, 16.5f}, - {14.0f, 14.0f}, - {16.5f, 14.0f}, - {16.5f, 16.5f}, - {14.0f, 16.5f}, - {16.75f, 14.0f}, - {19.25f, 14.0f}, - {19.25f, 16.5f}, - {16.75f, 16.5f}, - {19.5f, 14.0f}, - {22.0f, 14.0f}, - {22.0f, 16.5f}, - {19.5f, 16.5f}, - {22.25f, 14.0f}, - {24.75f, 14.0f}, - {24.75f, 16.5f}, - {22.25f, 16.5f}, - {25.0f, 14.0f}, - {27.5f, 14.0f}, - {27.5f, 16.5f}, - {25.0f, 16.5f}, - {27.75f, 14.0f}, - {30.25f, 14.0f}, - {30.25f, 16.5f}, - {27.75f, 16.5f}, - {30.5f, 14.0f}, - {33.0f, 14.0f}, - {33.0f, 16.5f}, - {30.5f, 16.5f}, - {33.25f, 14.0f}, - {35.75f, 14.0f}, - {35.75f, 16.5f}, - {33.25f, 16.5f}, - {36.0f, 14.0f}, - {38.5f, 14.0f}, - {38.5f, 16.5f}, - {36.0f, 16.5f}, - {0.25f, 16.75f}, - {2.75f, 16.75f}, - {2.75f, 19.25f}, - {0.25f, 19.25f}, - {3.0f, 16.75f}, - {5.5f, 16.75f}, - {5.5f, 19.25f}, - {3.0f, 19.25f}, - {5.75f, 16.75f}, - {8.25f, 16.75f}, - {8.25f, 19.25f}, - {5.75f, 19.25f}, - {8.5f, 16.75f}, - {11.0f, 16.75f}, - {11.0f, 19.25f}, - {8.5f, 19.25f}, - {11.25f, 16.75f}, - {13.75f, 16.75f}, - {13.75f, 19.25f}, - {11.25f, 19.25f}, - {14.0f, 16.75f}, - {16.5f, 16.75f}, - {16.5f, 19.25f}, - {14.0f, 19.25f}, - {16.75f, 16.75f}, - {19.25f, 16.75f}, - {19.25f, 19.25f}, - {16.75f, 19.25f}, - {19.5f, 16.75f}, - {22.0f, 16.75f}, - {22.0f, 19.25f}, - {19.5f, 19.25f}, - {22.25f, 16.75f}, - {24.75f, 16.75f}, - {24.75f, 19.25f}, - {22.25f, 19.25f}, - {25.0f, 16.75f}, - {27.5f, 16.75f}, - {27.5f, 19.25f}, - {25.0f, 19.25f}, - {27.75f, 16.75f}, - {30.25f, 16.75f}, - {30.25f, 19.25f}, - {27.75f, 19.25f}, - {30.5f, 16.75f}, - {33.0f, 16.75f}, - {33.0f, 19.25f}, - {30.5f, 19.25f}, - {33.25f, 16.75f}, - {35.75f, 16.75f}, - {35.75f, 19.25f}, - {33.25f, 19.25f}, - {36.0f, 16.75f}, - {38.5f, 16.75f}, - {38.5f, 19.25f}, - {36.0f, 19.25f}, - {0.25f, 19.5f}, - {2.75f, 19.5f}, - {2.75f, 22.0f}, - {0.25f, 22.0f}, - {3.0f, 19.5f}, - {5.5f, 19.5f}, - {5.5f, 22.0f}, - {3.0f, 22.0f}, - {5.75f, 19.5f}, - {8.25f, 19.5f}, - {8.25f, 22.0f}, - {5.75f, 22.0f}, - {8.5f, 19.5f}, - {11.0f, 19.5f}, - {11.0f, 22.0f}, - {8.5f, 22.0f}, - {11.25f, 19.5f}, - {13.75f, 19.5f}, - {13.75f, 22.0f}, - {11.25f, 22.0f}, - {14.0f, 19.5f}, - {16.5f, 19.5f}, - {16.5f, 22.0f}, - {14.0f, 22.0f}, - {16.75f, 19.5f}, - {19.25f, 19.5f}, - {19.25f, 22.0f}, - {16.75f, 22.0f}, - {19.5f, 19.5f}, - {22.0f, 19.5f}, - {22.0f, 22.0f}, - {19.5f, 22.0f}, - {22.25f, 19.5f}, - {24.75f, 19.5f}, - {24.75f, 22.0f}, - {22.25f, 22.0f}, - {25.0f, 19.5f}, - {27.5f, 19.5f}, - {27.5f, 22.0f}, - {25.0f, 22.0f}, - {27.75f, 19.5f}, - {30.25f, 19.5f}, - {30.25f, 22.0f}, - {27.75f, 22.0f}, - {30.5f, 19.5f}, - {33.0f, 19.5f}, - {33.0f, 22.0f}, - {30.5f, 22.0f}, - {33.25f, 19.5f}, - {35.75f, 19.5f}, - {35.75f, 22.0f}, - {33.25f, 22.0f}, - {36.0f, 19.5f}, - {38.5f, 19.5f}, - {38.5f, 22.0f}, - {36.0f, 22.0f}, - {0.25f, 22.25f}, - {2.75f, 22.25f}, - {2.75f, 24.75f}, - {0.25f, 24.75f}, - {3.0f, 22.25f}, - {5.5f, 22.25f}, - {5.5f, 24.75f}, - {3.0f, 24.75f}, - {5.75f, 22.25f}, - {8.25f, 22.25f}, - {8.25f, 24.75f}, - {5.75f, 24.75f}, - {8.5f, 22.25f}, - {11.0f, 22.25f}, - {11.0f, 24.75f}, - {8.5f, 24.75f}, - {11.25f, 22.25f}, - {13.75f, 22.25f}, - {13.75f, 24.75f}, - {11.25f, 24.75f}, - {14.0f, 22.25f}, - {16.5f, 22.25f}, - {16.5f, 24.75f}, - {14.0f, 24.75f}, - {16.75f, 22.25f}, - {19.25f, 22.25f}, - {19.25f, 24.75f}, - {16.75f, 24.75f}, - {19.5f, 22.25f}, - {22.0f, 22.25f}, - {22.0f, 24.75f}, - {19.5f, 24.75f}, - {22.25f, 22.25f}, - {24.75f, 22.25f}, - {24.75f, 24.75f}, - {22.25f, 24.75f}, - {25.0f, 22.25f}, - {27.5f, 22.25f}, - {27.5f, 24.75f}, - {25.0f, 24.75f}, - {27.75f, 22.25f}, - {30.25f, 22.25f}, - {30.25f, 24.75f}, - {27.75f, 24.75f}, - {30.5f, 22.25f}, - {33.0f, 22.25f}, - {33.0f, 24.75f}, - {30.5f, 24.75f}, - {33.25f, 22.25f}, - {35.75f, 22.25f}, - {35.75f, 24.75f}, - {33.25f, 24.75f}, - {36.0f, 22.25f}, - {38.5f, 22.25f}, - {38.5f, 24.75f}, - {36.0f, 24.75f}, - {0.25f, 25.0f}, - {2.75f, 25.0f}, - {2.75f, 27.5f}, - {0.25f, 27.5f}, - {3.0f, 25.0f}, - {5.5f, 25.0f}, - {5.5f, 27.5f}, - {3.0f, 27.5f}, - {5.75f, 25.0f}, - {8.25f, 25.0f}, - {8.25f, 27.5f}, - {5.75f, 27.5f}, - {8.5f, 25.0f}, - {11.0f, 25.0f}, - {11.0f, 27.5f}, - {8.5f, 27.5f}, - {11.25f, 25.0f}, - {13.75f, 25.0f}, - {13.75f, 27.5f}, - {11.25f, 27.5f}, - {14.0f, 25.0f}, - {16.5f, 25.0f}, - {16.5f, 27.5f}, - {14.0f, 27.5f}, - {16.75f, 25.0f}, - {19.25f, 25.0f}, - {19.25f, 27.5f}, - {16.75f, 27.5f}, - {19.5f, 25.0f}, - {22.0f, 25.0f}, - {22.0f, 27.5f}, - {19.5f, 27.5f}, - {22.25f, 25.0f}, - {24.75f, 25.0f}, - {24.75f, 27.5f}, - {22.25f, 27.5f}, - {25.0f, 25.0f}, - {27.5f, 25.0f}, - {27.5f, 27.5f}, - {25.0f, 27.5f}, - {27.75f, 25.0f}, - {30.25f, 25.0f}, - {30.25f, 27.5f}, - {27.75f, 27.5f}, - {30.5f, 25.0f}, - {33.0f, 25.0f}, - {33.0f, 27.5f}, - {30.5f, 27.5f}, - {33.25f, 25.0f}, - {35.75f, 25.0f}, - {35.75f, 27.5f}, - {33.25f, 27.5f}, - {36.0f, 25.0f}, - {38.5f, 25.0f}, - {38.5f, 27.5f}, - {36.0f, 27.5f} - -}; - -const cv::Point2f CChartDigitalSGCenter[140] = { - {1.5f, 1.5f}, - {4.25f, 1.5f}, - {7.0f, 1.5f}, - {9.75f, 1.5f}, - {12.5f, 1.5f}, - {15.25f, 1.5f}, - {18.0f, 1.5f}, - {20.75f, 1.5f}, - {23.5f, 1.5f}, - {26.25f, 1.5f}, - {29.0f, 1.5f}, - {31.75f, 1.5f}, - {34.5f, 1.5f}, - {37.25f, 1.5f}, - {1.5f, 4.25f}, - {4.25f, 4.25f}, - {7.0f, 4.25f}, - {9.75f, 4.25f}, - {12.5f, 4.25f}, - {15.25f, 4.25f}, - {18.0f, 4.25f}, - {20.75f, 4.25f}, - {23.5f, 4.25f}, - {26.25f, 4.25f}, - {29.0f, 4.25f}, - {31.75f, 4.25f}, - {34.5f, 4.25f}, - {37.25f, 4.25f}, - {1.5f, 7.0f}, - {4.25f, 7.0f}, - {7.0f, 7.0f}, - {9.75f, 7.0f}, - {12.5f, 7.0f}, - {15.25f, 7.0f}, - {18.0f, 7.0f}, - {20.75f, 7.0f}, - {23.5f, 7.0f}, - {26.25f, 7.0f}, - {29.0f, 7.0f}, - {31.75f, 7.0f}, - {34.5f, 7.0f}, - {37.25f, 7.0f}, - {1.5f, 9.75f}, - {4.25f, 9.75f}, - {7.0f, 9.75f}, - {9.75f, 9.75f}, - {12.5f, 9.75f}, - {15.25f, 9.75f}, - {18.0f, 9.75f}, - {20.75f, 9.75f}, - {23.5f, 9.75f}, - {26.25f, 9.75f}, - {29.0f, 9.75f}, - {31.75f, 9.75f}, - {34.5f, 9.75f}, - {37.25f, 9.75f}, - {1.5f, 12.5f}, - {4.25f, 12.5f}, - {7.0f, 12.5f}, - {9.75f, 12.5f}, - {12.5f, 12.5f}, - {15.25f, 12.5f}, - {18.0f, 12.5f}, - {20.75f, 12.5f}, - {23.5f, 12.5f}, - {26.25f, 12.5f}, - {29.0f, 12.5f}, - {31.75f, 12.5f}, - {34.5f, 12.5f}, - {37.25f, 12.5f}, - {1.5f, 15.25f}, - {4.25f, 15.25f}, - {7.0f, 15.25f}, - {9.75f, 15.25f}, - {12.5f, 15.25f}, - {15.25f, 15.25f}, - {18.0f, 15.25f}, - {20.75f, 15.25f}, - {23.5f, 15.25f}, - {26.25f, 15.25f}, - {29.0f, 15.25f}, - {31.75f, 15.25f}, - {34.5f, 15.25f}, - {37.25f, 15.25f}, - {1.5f, 18.0f}, - {4.25f, 18.0f}, - {7.0f, 18.0f}, - {9.75f, 18.0f}, - {12.5f, 18.0f}, - {15.25f, 18.0f}, - {18.0f, 18.0f}, - {20.75f, 18.0f}, - {23.5f, 18.0f}, - {26.25f, 18.0f}, - {29.0f, 18.0f}, - {31.75f, 18.0f}, - {34.5f, 18.0f}, - {37.25f, 18.0f}, - {1.5f, 20.75f}, - {4.25f, 20.75f}, - {7.0f, 20.75f}, - {9.75f, 20.75f}, - {12.5f, 20.75f}, - {15.25f, 20.75f}, - {18.0f, 20.75f}, - {20.75f, 20.75f}, - {23.5f, 20.75f}, - {26.25f, 20.75f}, - {29.0f, 20.75f}, - {31.75f, 20.75f}, - {34.5f, 20.75f}, - {37.25f, 20.75f}, - {1.5f, 23.5f}, - {4.25f, 23.5f}, - {7.0f, 23.5f}, - {9.75f, 23.5f}, - {12.5f, 23.5f}, - {15.25f, 23.5f}, - {18.0f, 23.5f}, - {20.75f, 23.5f}, - {23.5f, 23.5f}, - {26.25f, 23.5f}, - {29.0f, 23.5f}, - {31.75f, 23.5f}, - {34.5f, 23.5f}, - {37.25f, 23.5f}, - {1.5f, 26.25f}, - {4.25f, 26.25f}, - {7.0f, 26.25f}, - {9.75f, 26.25f}, - {12.5f, 26.25f}, - {15.25f, 26.25f}, - {18.0f, 26.25f}, - {20.75f, 26.25f}, - {23.5f, 26.25f}, - {26.25f, 26.25f}, - {29.0f, 26.25f}, - {31.75f, 26.25f}, - {34.5f, 26.25f}, - {37.25f, 26.25f}, - -}; - -////////////////////////////////////////////////////////////////////////////////////////////// -/// CChartVinyl - -const float CChartVinylColors[18][9] = { - // sRGB CIE L*a*b* Munsell Notation - // --------------- ------------------------ Hue Value / Chroma - // R G B L* a* b* - {255.0f, 255.0f, 255.0f, 100.0f, 0.0052f, -0.0104f, -1.0f, -1.0f, -1.0f}, - {176.0f, 180.0f, 183.0f, 73.0834f, -0.820f, -2.021f, -1.0f, -1.0f, -1.0f}, - {150.0f, 151.0f, 155.0f, 62.493f, 0.426f, -2.231f, -1.0f, -1.0f, -1.0f}, - {119.0f, 120.0f, 124.0f, 50.464f, 0.447f, -2.324f, -1.0f, -1.0f, -1.0f}, - {88.0f, 89.0f, 91.0f, 37.797f, 0.036f, -1.297f, -1.0f, -1.0f, -1.0f}, - {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -1.0f, -1.0f, -1.0f}, - {237.0f, 27.0f, 36.0f, 51.588f, 73.518f, 51.569f, -1.0f, -1.0f, -1.0f}, - {254.0f, 242.0f, 0.0f, 93.699f, -15.734f, 91.942f, -1.0f, -1.0f, -1.0f}, - {106.0f, 189.0f, 71.0f, 69.408f, -46.594f, 50.487f, -1.0f, -1.0f, -1.0f}, - {0.0f, 173.0f, 239.0f, 66.610f, -13.679f, -43.172f, -1.0f, -1.0f, -1.0f}, - {0.0f, 26.0f, 83.0f, 11.711f, 16.980f, -37.176f, -1.0f, -1.0f, -1.0f}, - {238.0f, 1.0f, 141.0f, 51.974f, 81.944f, -8.407f, -1.0f, -1.0f, -1.0f}, - {174.0f, 50.0f, 58.0f, 40.549f, 50.440f, 24.849f, -1.0f, -1.0f, -1.0f}, - {209.0f, 127.0f, 41.0f, 60.816f, 26.069f, 49.442f, -1.0f, -1.0f, -1.0f}, - {7.0f, 136.0f, 165.0f, 52.253f, -19.950f, -23.996f, -1.0f, -1.0f, -1.0f}, - {188.0f, 86.0f, 149.0f, 51.286f, 48.470f, -15.058f, -1.0f, -1.0f, -1.0f}, - {200.0f, 159.0f, 139.0f, 68.707f, 12.296f, 16.213f, -1.0f, -1.0f, -1.0f}, - {183.0f, 147.0f, 125.0f, 63.684f, 10.293f, 16.764f, -1.0f, -1.0f, -1.0f}, -}; - -const cv::Point2f CChartVinylCellchart[72] = { - {0.25f, 0.25f}, - {3.0f, 0.25f}, - {3.0f, 6.25f}, - {0.25f, 6.25f}, - {3.25f, 0.25f}, - {6.0f, 0.25f}, - {6.0f, 6.25f}, - {3.25f, 6.25f}, - {6.25f, 0.25f}, - {9.0f, 0.25f}, - {9.0f, 6.25f}, - {6.25f, 6.25f}, - {9.25f, 0.25f}, - {12.0f, 0.25f}, - {12.0f, 6.25f}, - {9.25f, 6.25f}, - {12.25f, 0.25f}, - {15.0f, 0.25f}, - {15.0f, 6.25f}, - {12.25f, 6.25f}, - {15.25f, 0.25f}, - {18.0f, 0.25f}, - {18.0f, 6.25f}, - {15.25f, 6.25f}, - {0.25f, 6.5f}, - {3.0f, 6.5f}, - {3.0f, 9.25f}, - {0.25f, 9.25f}, - {3.25f, 6.5f}, - {6.0f, 6.5f}, - {6.0f, 9.25f}, - {3.25f, 9.25f}, - {6.25f, 6.5f}, - {9.0f, 6.5f}, - {9.0f, 9.25f}, - {6.25f, 9.25f}, - {9.25f, 6.5f}, - {12.0f, 6.5f}, - {12.0f, 9.25f}, - {9.25f, 9.25f}, - {12.25f, 6.5f}, - {15.0f, 6.5f}, - {15.0f, 9.25f}, - {12.25f, 9.25f}, - {15.25f, 6.5f}, - {18.0f, 6.5f}, - {18.0f, 9.25f}, - {15.25f, 9.25f}, - {0.25f, 9.5f}, - {3.0f, 9.5f}, - {3.0f, 12.25f}, - {0.25f, 12.25f}, - {3.25f, 9.5f}, - {6.0f, 9.5f}, - {6.0f, 12.25f}, - {3.25f, 12.25f}, - {6.25f, 9.5f}, - {9.0f, 9.5f}, - {9.0f, 12.25f}, - {6.25f, 12.25f}, - {9.25f, 9.5f}, - {12.0f, 9.5f}, - {12.0f, 12.25f}, - {9.25f, 12.25f}, - {12.25f, 9.5f}, - {15.0f, 9.5f}, - {15.0f, 12.25f}, - {12.25f, 12.25f}, - {15.25f, 9.5f}, - {18.0f, 9.5f}, - {18.0f, 12.25f}, - {15.25f, 12.25f}, - -}; - -const cv::Point2f CChartVinylCenter[18] = { - {1.625f, 3.25f}, - {4.625f, 3.25f}, - {7.625f, 3.25f}, - {10.625f, 3.25f}, - {13.625f, 3.25f}, - {16.625f, 3.25f}, - {1.625f, 7.875f}, - {4.625f, 7.875f}, - {7.625f, 7.875f}, - {10.625f, 7.875f}, - {13.625f, 7.875f}, - {16.625f, 7.875f}, - {1.625f, 10.875f}, - {4.625f, 10.875f}, - {7.625f, 10.875f}, - {10.625f, 10.875f}, - {13.625f, 10.875f}, - {16.625f, 10.875f}, - -}; - -} // namespace mcc -} // namespace cv - -#endif diff --git a/modules/mcc/src/distance.hpp b/modules/mcc/src/distance.hpp index 5acfc93cdb6..0fbc533778a 100644 --- a/modules/mcc/src/distance.hpp +++ b/modules/mcc/src/distance.hpp @@ -25,11 +25,11 @@ // Jinheng Zhang // Chenqi Shan -#ifndef __OPENCV_MCC_DISTANCE_HPP__ -#define __OPENCV_MCC_DISTANCE_HPP__ +#ifndef __OPENCV_CCM_DISTANCE_HPP__ +#define __OPENCV_CCM_DISTANCE_HPP__ #include "utils.hpp" -#include "opencv2/mcc/ccm.hpp" +#include "opencv2/ccm.hpp" namespace cv { namespace ccm { diff --git a/modules/mcc/src/graph_cluster.cpp b/modules/mcc/src/graph_cluster.cpp deleted file mode 100644 index 3c1cea3df12..00000000000 --- a/modules/mcc/src/graph_cluster.cpp +++ /dev/null @@ -1,139 +0,0 @@ -// This file is part of OpenCV project. -// It is subject to the license terms in the LICENSE file found in the top-level directory -// of this distribution and at http://opencv.org/license.html. - -/* - * MIT License - * - * Copyright (c) 2018 Pedro Diamel Marrero Fernández - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to deal - * in the Software without restriction, including without limitation the rights - * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell - * copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ - -#include "precomp.hpp" -#include "graph_cluster.hpp" - -namespace cv -{ -namespace mcc -{ -CB0cluster::CB0cluster() -{ -} - -CB0cluster::~CB0cluster() -{ -} - -void CB0cluster:: - group() -{ - - size_t n = X.size(); - G.clear(); - G.resize(n); - - for (int i = 0; i < (int)n - 1; i++) - { - std::vector Y; - Y.clear(); - Y.resize(n - i); - Y[0] = 0; - - // 1. group similar blobs - double dist, w, y; - for (int j = i + 1, k = 1; j < (int)n; j++, k++) - { - //dist(X_i,X_j) - dist = norm(X[i] - X[j]); - - //heuristic to combine two sub charts, This is pretty ugly at the moment, - //Looking for somthing better - w = min(abs(W[i] - W[j]) / (W[i] + W[j]), - abs(max(W[i], W[j]) - 24 / 11.0f * min(W[i], W[j])) / (max(W[i], W[j]) + 24 / 11.0f * min(W[i], W[j]))); - w = (w < 0.1); - - y = w * dist; - Y[k] = (y < B0[i]) * y; - ; - } - - if (!G[i]) - G[i] = i + 1; - - std::vector pos_b0; - find(Y, pos_b0); - - size_t m = pos_b0.size(); - if (!m) - continue; - - std::vector pos_nz, pos_z; - for (int j = 0; j < (int)m; j++) - { - pos_b0[j] = pos_b0[j] + i; - if (G[pos_b0[j]]) - pos_nz.push_back(j); - else - pos_z.push_back(j); - } - - for (int j = 0; j < (int)pos_z.size(); j++) - { - pos_z[j] = pos_b0[pos_z[j]]; - G[pos_z[j]] = G[i]; - } - - if (!pos_nz.size()) - continue; - - std::vector g; - for (size_t j = 0; j < pos_nz.size(); j++) - { - pos_nz[j] = pos_b0[pos_nz[j]]; - g.push_back(G[pos_nz[j]]); - } - - unique(g, g); - for (size_t k = 0; k < g.size(); k++) - { - int gk = g[k]; - for (size_t j = 0; j < G.size(); j++) - if (G[j] == gk) - G[j] = G[i]; - } - } - - if (!G[n - 1]) - G[n - 1] = (int)n; - - std::vector S; - S = G; - unique(S, S); - for (int k = 0; k < (int)S.size(); k++) - { - int gk = S[k]; - for (int j = 0; j < (int)G.size(); j++) - if (G[j] == gk) - G[j] = k; - } -} - -} // namespace mcc -} // namespace cv diff --git a/modules/mcc/src/graph_cluster.hpp b/modules/mcc/src/graph_cluster.hpp deleted file mode 100644 index 6e767362900..00000000000 --- a/modules/mcc/src/graph_cluster.hpp +++ /dev/null @@ -1,74 +0,0 @@ -// This file is part of OpenCV project. -// It is subject to the license terms in the LICENSE file found in the top-level directory -// of this distribution and at http://opencv.org/license.html. - -/* - * MIT License - * - * Copyright (c) 2018 Pedro Diamel Marrero Fernández - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to deal - * in the Software without restriction, including without limitation the rights - * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell - * copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ - -#ifndef _MCC_GRAPH_CLUSTERS_HPP -#define _MCC_GRAPH_CLUSTERS_HPP - -namespace cv -{ -namespace mcc -{ - -class CB0cluster -{ -public: - CB0cluster(); - ~CB0cluster(); - - inline void setVertex(const std::vector &V) { X = V; } - inline void setB0(const std::vector &b0) { B0 = b0; } - inline void setWeight(const std::vector &Weight) { W = Weight; } - - void group(); - - void getGroup(std::vector &g) { g = G; } - -private: - //entrada - std::vector X; - std::vector B0; - std::vector W; - - //salida - std::vector G; - -private: - template - void find(const std::vector &A, std::vector &indx) - { - indx.clear(); - for (int i = 0; i < (int)A.size(); i++) - if (A[i]) - indx.push_back(i); - } -}; - -} // namespace mcc -} // namespace cv - -#endif //_MCC_GRAPH_CLUSTERS_HPP diff --git a/modules/mcc/src/io.hpp b/modules/mcc/src/io.hpp index c79864e3c41..4fa9dce4665 100644 --- a/modules/mcc/src/io.hpp +++ b/modules/mcc/src/io.hpp @@ -25,8 +25,8 @@ // Jinheng Zhang // Chenqi Shan -#ifndef __OPENCV_MCC_IO_HPP__ -#define __OPENCV_MCC_IO_HPP__ +#ifndef __OPENCV_CCM_IO_HPP__ +#define __OPENCV_CCM_IO_HPP__ #include #include diff --git a/modules/mcc/src/linearize.hpp b/modules/mcc/src/linearize.hpp index a703b5c5293..7f5d516dce5 100644 --- a/modules/mcc/src/linearize.hpp +++ b/modules/mcc/src/linearize.hpp @@ -25,13 +25,13 @@ // Jinheng Zhang // Chenqi Shan -#ifndef __OPENCV_MCC_LINEARIZE_HPP__ -#define __OPENCV_MCC_LINEARIZE_HPP__ +#ifndef __OPENCV_CCM_LINEARIZE_HPP__ +#define __OPENCV_CCM_LINEARIZE_HPP__ #include #include #include "color.hpp" -#include "opencv2/mcc/ccm.hpp" +#include "opencv2/ccm.hpp" namespace cv { namespace ccm { diff --git a/modules/mcc/src/mcc.cpp b/modules/mcc/src/mcc.cpp deleted file mode 100644 index 9f2d96ab7fc..00000000000 --- a/modules/mcc/src/mcc.cpp +++ /dev/null @@ -1,71 +0,0 @@ -// This file is part of OpenCV project. -// It is subject to the license terms in the LICENSE file found in the top-level directory -// of this distribution and at http://opencv.org/license.html. - -/* - * MIT License - * - * Copyright (c) 2018 Pedro Diamel Marrero Fernández - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to deal - * in the Software without restriction, including without limitation the rights - * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell - * copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ - -#include "opencv2/mcc.hpp" - -namespace cv -{ -namespace mcc -{ - -/** - * - */ -DetectorParameters::DetectorParameters() - : adaptiveThreshWinSizeMin(23), - adaptiveThreshWinSizeMax(153), - adaptiveThreshWinSizeStep(16), - adaptiveThreshConstant(7), - minContoursAreaRate(0.003), - minContoursArea(100), - confidenceThreshold(0.5), - minContourSolidity(0.9), - findCandidatesApproxPolyDPEpsMultiplier(0.05), - borderWidth(0), - B0factor(1.25f), - maxError(0.1f), - minContourPointsAllowed(4), - minContourLengthAllowed(100), - minInterContourDistance(100), - minInterCheckerDistance(10000), - minImageSize(1000), - minGroupSize(4) - -{ -} - -/** - * @brief Create a new set of DetectorParameters with default values. - */ -Ptr DetectorParameters::create() -{ - Ptr params = makePtr(); - return params; -} -} // namespace mcc -} // namespace cv diff --git a/modules/mcc/src/operations.hpp b/modules/mcc/src/operations.hpp index ae3b39b6019..994c4b1c39a 100644 --- a/modules/mcc/src/operations.hpp +++ b/modules/mcc/src/operations.hpp @@ -25,8 +25,8 @@ // Jinheng Zhang // Chenqi Shan -#ifndef __OPENCV_MCC_OPERATIONS_HPP__ -#define __OPENCV_MCC_OPERATIONS_HPP__ +#ifndef __OPENCV_CCM_OPERATIONS_HPP__ +#define __OPENCV_CCM_OPERATIONS_HPP__ #include "utils.hpp" diff --git a/modules/mcc/src/precomp.hpp b/modules/mcc/src/precomp.hpp index d310633e947..3cbd7bfd5e6 100644 --- a/modules/mcc/src/precomp.hpp +++ b/modules/mcc/src/precomp.hpp @@ -26,8 +26,8 @@ * SOFTWARE. */ -#ifndef _MCC_PRECOMP_HPP -#define _MCC_PRECOMP_HPP +#ifndef _CCM_PRECOMP_HPP +#define _CCM_PRECOMP_HPP #include @@ -39,8 +39,6 @@ #include #include -#include "opencv2/mcc.hpp" +#include "opencv2/ccm.hpp" -#include "common.hpp" - -#endif //_MCC_PRECOMP_HPP +#endif //_CCM_PRECOMP_HPP diff --git a/modules/mcc/src/utils.hpp b/modules/mcc/src/utils.hpp index 07ca65cb968..c7823c8b721 100644 --- a/modules/mcc/src/utils.hpp +++ b/modules/mcc/src/utils.hpp @@ -25,8 +25,8 @@ // Jinheng Zhang // Chenqi Shan -#ifndef __OPENCV_MCC_UTILS_HPP__ -#define __OPENCV_MCC_UTILS_HPP__ +#ifndef __OPENCV_CCM_UTILS_HPP__ +#define __OPENCV_CCM_UTILS_HPP__ #include diff --git a/modules/mcc/src/wiener_filter.cpp b/modules/mcc/src/wiener_filter.cpp deleted file mode 100644 index 5a5d374b1c3..00000000000 --- a/modules/mcc/src/wiener_filter.cpp +++ /dev/null @@ -1,98 +0,0 @@ -// This file is part of OpenCV project. -// It is subject to the license terms in the LICENSE file found in the top-level directory -// of this distribution and at http://opencv.org/license.html. - -/* - * MIT License - * - * Copyright (c) 2018 Pedro Diamel Marrero Fernández - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to deal - * in the Software without restriction, including without limitation the rights - * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell - * copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ - -#include "wiener_filter.hpp" - -namespace cv -{ -namespace mcc -{ -CWienerFilter::CWienerFilter() -{ -} - -CWienerFilter::~CWienerFilter() -{ -} - -void CWienerFilter:: - wiener2(InputArray _src, OutputArray _dst, int szWindowX, int szWindowY) -{ - - CV_Assert(szWindowX > 0 && szWindowY > 0); - - Mat src = _src.getMat(); - - int nRows; - int nCols; - Scalar v = 0; - Mat p_kernel; - Mat srcStub; - //Now create a temporary holding matrix - Mat p_tmpMat1, p_tmpMat2, p_tmpMat3, p_tmpMat4; - double noise_power; - - nRows = szWindowY; - nCols = szWindowX; - - p_kernel = Mat(nRows, nCols, CV_32F, Scalar(1.0 / (double)(nRows * nCols))); - - //Local mean of input - filter2D(src, p_tmpMat1, -1, p_kernel, Point(nCols / 2, nRows / 2)); //localMean - - //Local variance of input - p_tmpMat2 = src.mul(src); - filter2D(p_tmpMat2, p_tmpMat3, -1, p_kernel, Point(nCols / 2, nRows / 2)); - - //Subtract off local_mean^2 from local variance - p_tmpMat4 = p_tmpMat1.mul(p_tmpMat1); //localMean^2 - p_tmpMat3 = p_tmpMat3 - p_tmpMat4; - // Sub(p_tmpMat3, p_tmpMat4, p_tmpMat3); //filter(in^2) - localMean^2 ==> localVariance - - //Estimate noise power - v = mean(p_tmpMat3); - noise_power = v.val[0]; - // result = local_mean + ( max(0, localVar - noise) ./ max(localVar, noise)) .* (in - local_mean) - - p_tmpMat4 = src - p_tmpMat1; //in - local_mean - - p_tmpMat2 = max(p_tmpMat3, noise_power); //max(localVar, noise) - - add(p_tmpMat3, Scalar(-noise_power), p_tmpMat3); //localVar - noise - p_tmpMat3 = max(p_tmpMat3, 0); // max(0, localVar - noise) - - p_tmpMat3 = (p_tmpMat3 / p_tmpMat2); //max(0, localVar-noise) / max(localVar, noise) - - Mat dst = p_tmpMat3.mul(p_tmpMat4); - dst = dst + p_tmpMat1; - - _dst.assign(dst); -} - -} // namespace mcc -} // namespace cv diff --git a/modules/mcc/src/wiener_filter.hpp b/modules/mcc/src/wiener_filter.hpp deleted file mode 100644 index 381329a9d32..00000000000 --- a/modules/mcc/src/wiener_filter.hpp +++ /dev/null @@ -1,68 +0,0 @@ -// This file is part of OpenCV project. -// It is subject to the license terms in the LICENSE file found in the top-level directory -// of this distribution and at http://opencv.org/license.html. - -/* - * MIT License - * - * Copyright (c) 2018 Pedro Diamel Marrero Fernández - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to deal - * in the Software without restriction, including without limitation the rights - * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell - * copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ - -/** - * @file wiener_filter - * @brief filter wiener for denoise - * @author: Pedro D. Marrero Fernandez - * @data: 17/05/2016 - */ - -#ifndef _WIENER_FILTER_HPP -#define _WIENER_FILTER_HPP - -#include "precomp.hpp" -namespace cv -{ -namespace mcc -{ - -/// CWienerFilter -/** @brief wiener class filter for denoise - * @author: Pedro D. Marrero Fernandez - * @data: 17/05/2016 - */ -class CWienerFilter -{ -public: - CWienerFilter(); - ~CWienerFilter(); - - /** cvWiener2 - * @brief A Wiener 2D Filter implementation for OpenCV - * @author: Ray Juang / rayver{ _at_ } hkn{ / _dot_ / } berkeley(_dot_) edu - * @date : 12.1.2006 - */ - void wiener2(InputArray _src, OutputArray _dst, int szWindowX, int szWindowY); -}; - -} // namespace mcc - -} // namespace cv - -#endif //_WIENER_FILTER_HPP diff --git a/modules/mcc/test/test_ccm.cpp b/modules/mcc/test/test_ccm.cpp index cd6498f1b6e..71bd5b7c528 100644 --- a/modules/mcc/test/test_ccm.cpp +++ b/modules/mcc/test/test_ccm.cpp @@ -162,5 +162,66 @@ TEST(CV_ccmRunColorCorrection, test_masks_weights_2) ASSERT_MAT_NEAR(model2.getMask(), mask, 0.0); } +TEST(CV_mcc_ccm_test, compute_ccm) +{ + // read gold chartsRGB + string path = cvtest::findDataFile("mcc/mcc_ccm_test.yml"); + FileStorage fs(path, FileStorage::READ); + Mat chartsRGB; + FileNode node = fs["chartsRGB"]; + node >> chartsRGB; + + // compute CCM + ColorCorrectionModel model(chartsRGB.col(1).clone().reshape(3, chartsRGB.rows/3) / 255., COLORCHECKER_Macbeth); + model.run(); + + // read gold CCM + node = fs["ccm"]; + ASSERT_FALSE(node.empty()); + Mat gold_ccm; + node >> gold_ccm; + fs.release(); + + // check CCM + Mat ccm = model.getCCM(); + EXPECT_MAT_NEAR(gold_ccm, ccm, 1e-8); + + const double gold_loss = 4.6386569120323129; + // check loss + const double loss = model.getLoss(); + EXPECT_NEAR(gold_loss, loss, 1e-8); +} + +TEST(CV_mcc_ccm_test, infer) +{ + string path = cvtest::findDataFile("mcc/mcc_ccm_test.jpg"); + Mat img = imread(path, IMREAD_COLOR); + // read gold calibrate img + path = cvtest::findDataFile("mcc/mcc_ccm_test_res.png"); + Mat gold_img = imread(path); + + // read gold chartsRGB + path = cvtest::findDataFile("mcc/mcc_ccm_test.yml"); + FileStorage fs(path, FileStorage::READ); + Mat chartsRGB; + FileNode node = fs["chartsRGB"]; + node >> chartsRGB; + fs.release(); + + // compute CCM + ColorCorrectionModel model(chartsRGB.col(1).clone().reshape(3, chartsRGB.rows/3) / 255., COLORCHECKER_Macbeth); + model.run(); + + // compute calibrate image + Mat calibratedImage; + cvtColor(img, calibratedImage, COLOR_BGR2RGB); + calibratedImage.convertTo(calibratedImage, CV_64F, 1. / 255.); + calibratedImage = model.infer(calibratedImage); + calibratedImage.convertTo(calibratedImage, CV_8UC3, 255.); + cvtColor(calibratedImage, calibratedImage, COLOR_RGB2BGR); + // check calibrated image + EXPECT_MAT_NEAR(gold_img, calibratedImage, 0.1); +} + } // namespace } // namespace opencv_test diff --git a/modules/mcc/test/test_mcc.cpp b/modules/mcc/test/test_mcc.cpp deleted file mode 100644 index 37bd1f11fc7..00000000000 --- a/modules/mcc/test/test_mcc.cpp +++ /dev/null @@ -1,183 +0,0 @@ -// This file is part of OpenCV project. -// It is subject to the license terms in the LICENSE file found in the top-level directory -// of this distribution and at http://opencv.org/license.html. - -#include "test_precomp.hpp" - -#include - -namespace opencv_test -{ -namespace -{ - -using namespace std; -/****************************************************************************************\ - * Test drawing works properly -\****************************************************************************************/ - -void runCCheckerDraw(Ptr pChecker, int rows, int cols, unsigned int number_of_cells_in_colorchecker) -{ - cv::Mat img(rows, cols, CV_8UC3, {0, 0, 0}); - - Ptr cdraw = CCheckerDraw::create(pChecker); - - cdraw->draw(img); - - //make sure this contains extacly as many rectangles as in the pChecker - vector> contours; - cv::cvtColor(img, img, COLOR_BGR2GRAY); - findContours(img, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE); - - ASSERT_EQ(contours.size(), number_of_cells_in_colorchecker); -} - -TEST(CV_mccRunCCheckerDrawTest, accuracy_MCC24) -{ - Ptr pChecker = CChecker::create(); - pChecker->setTarget(MCC24); - pChecker->setBox({{0, 0}, {480, 0}, {480, 640}, {0, 640}}); - runCCheckerDraw(pChecker, 640, 480, 24); -} -TEST(CV_mccRunCCheckerDrawTest, accuracy_SG140) -{ - Ptr pChecker = CChecker::create(); - pChecker->setTarget(SG140); - pChecker->setBox({{0, 0}, {480, 0}, {480, 640}, {0, 640}}); - runCCheckerDraw(pChecker, 640, 480, 140); -} -TEST(CV_mccRunCCheckerDrawTest, accuracy_VINYL18) -{ - Ptr pChecker = CChecker::create(); - pChecker->setTarget(VINYL18); - pChecker->setBox({{0, 0}, {480, 0}, {480, 640}, {0, 640}}); - runCCheckerDraw(pChecker, 640, 480, 18); -} - -/****************************************************************************************\ - * Test detection works properly on the simplest images -\****************************************************************************************/ - -void runCCheckerDetectorBasic(std::string image_name, TYPECHART chartType) -{ - Ptr detector = CCheckerDetector::create(); - std::string path = cvtest::findDataFile("mcc/" + image_name); - cv::Mat img = imread(path); - ASSERT_FALSE(img.empty()) << "Test image can't be loaded: " << path; - - ASSERT_TRUE(detector->process(img, chartType)); -} -TEST(CV_mccRunCCheckerDetectorBasic, accuracy_SG140) -{ - runCCheckerDetectorBasic("SG140.png", SG140); -} -TEST(CV_mccRunCCheckerDetectorBasic, accuracy_MCC24) -{ - runCCheckerDetectorBasic("MCC24.png", MCC24); -} - -TEST(CV_mccRunCCheckerDetectorBasic, accuracy_VINYL18) -{ - runCCheckerDetectorBasic("VINYL18.png", VINYL18); -} - -TEST(CV_mcc_ccm_test, detect_Macbeth) -{ - string path = cvtest::findDataFile("mcc/mcc_ccm_test.jpg"); - Mat img = imread(path, IMREAD_COLOR); - Ptr detector = CCheckerDetector::create(); - - // detect MCC24 board - ASSERT_TRUE(detector->process(img, MCC24, 1, false)); - - // read gold Macbeth corners - path = cvtest::findDataFile("mcc/mcc_ccm_test.yml"); - FileStorage fs(path, FileStorage::READ); - ASSERT_TRUE(fs.isOpened()); - FileNode node = fs["Macbeth_corners"]; - ASSERT_FALSE(node.empty()); - vector gold_corners; - node >> gold_corners; - Ptr checker = detector->getBestColorChecker(); - - // check Macbeth corners - vector corners = checker->getBox(); - // diff 3.57385 corresponds to ARM v8 - // diff 4.37915 correspnds to Ubuntu 24.04 x86_64 configuration - EXPECT_MAT_NEAR(gold_corners, corners, 4.38); - - // read gold chartsRGB - node = fs["chartsRGB"]; - Mat goldChartsRGB; - node >> goldChartsRGB; - fs.release(); - - // check chartsRGB - Mat chartsRGB = checker->getChartsRGB(); - EXPECT_MAT_NEAR(goldChartsRGB.col(1), chartsRGB.col(1), 0.3); // diff 0.292077 on Ubuntu 20.04 ARM64 -} - -TEST(CV_mcc_ccm_test, compute_ccm) -{ - // read gold chartsRGB - string path = cvtest::findDataFile("mcc/mcc_ccm_test.yml"); - FileStorage fs(path, FileStorage::READ); - Mat chartsRGB; - FileNode node = fs["chartsRGB"]; - node >> chartsRGB; - - // compute CCM - ColorCorrectionModel model(chartsRGB.col(1).clone().reshape(3, chartsRGB.rows/3) / 255., COLORCHECKER_Macbeth); - model.run(); - - // read gold CCM - node = fs["ccm"]; - ASSERT_FALSE(node.empty()); - Mat gold_ccm; - node >> gold_ccm; - fs.release(); - - // check CCM - Mat ccm = model.getCCM(); - EXPECT_MAT_NEAR(gold_ccm, ccm, 1e-8); - - const double gold_loss = 4.6386569120323129; - // check loss - const double loss = model.getLoss(); - EXPECT_NEAR(gold_loss, loss, 1e-8); -} - -TEST(CV_mcc_ccm_test, infer) -{ - string path = cvtest::findDataFile("mcc/mcc_ccm_test.jpg"); - Mat img = imread(path, IMREAD_COLOR); - // read gold calibrate img - path = cvtest::findDataFile("mcc/mcc_ccm_test_res.png"); - Mat gold_img = imread(path); - - // read gold chartsRGB - path = cvtest::findDataFile("mcc/mcc_ccm_test.yml"); - FileStorage fs(path, FileStorage::READ); - Mat chartsRGB; - FileNode node = fs["chartsRGB"]; - node >> chartsRGB; - fs.release(); - - // compute CCM - ColorCorrectionModel model(chartsRGB.col(1).clone().reshape(3, chartsRGB.rows/3) / 255., COLORCHECKER_Macbeth); - model.run(); - - // compute calibrate image - Mat calibratedImage; - cvtColor(img, calibratedImage, COLOR_BGR2RGB); - calibratedImage.convertTo(calibratedImage, CV_64F, 1. / 255.); - calibratedImage = model.infer(calibratedImage); - calibratedImage.convertTo(calibratedImage, CV_8UC3, 255.); - cvtColor(calibratedImage, calibratedImage, COLOR_RGB2BGR); - // check calibrated image - EXPECT_MAT_NEAR(gold_img, calibratedImage, 0.1); -} - - -} // namespace -} // namespace opencv_test diff --git a/modules/mcc/test/test_precomp.hpp b/modules/mcc/test/test_precomp.hpp index c4d81a348c5..b6be71df3fd 100644 --- a/modules/mcc/test/test_precomp.hpp +++ b/modules/mcc/test/test_precomp.hpp @@ -7,12 +7,10 @@ #include "opencv2/ts.hpp" #include "opencv2/ts/cuda_test.hpp" -#include "opencv2/mcc.hpp" -#include "opencv2/mcc/ccm.hpp" +#include "opencv2/ccm.hpp" namespace opencv_test { -using namespace cv::mcc; using namespace cv::ccm; } diff --git a/modules/mcc/tutorials/basic_ccm/color_correction_model.markdown b/modules/mcc/tutorials/basic_ccm/color_correction_model.markdown index 76b98cd3f4b..f1f2687a0b0 100644 --- a/modules/mcc/tutorials/basic_ccm/color_correction_model.markdown +++ b/modules/mcc/tutorials/basic_ccm/color_correction_model.markdown @@ -17,18 +17,18 @@ When building OpenCV, run the following command to build all the contrib modules cmake -D OPENCV_EXTRA_MODULES_PATH=/modules/ ``` -Or only build the mcc module: +Or only build the ccm module: ```make -cmake -D OPENCV_EXTRA_MODULES_PATH=/modules/mcc +cmake -D OPENCV_EXTRA_MODULES_PATH=/modules/ccm ``` -Or make sure you check the mcc module in the GUI version of CMake: cmake-gui. +Or make sure you check the ccm module in the GUI version of CMake: cmake-gui. Source Code of the sample ----------- -The sample has two parts of code, the first is the color checker detector model, see details at @ref tutorial_mcc_basic_chart_detection, the second part is to make collor calibration. +The sample has two parts of code, the first is the color checker detector model, see details at @ref tutorial_macbeth_chart_detection, the second part is to make collor calibration. ``` Here are the parameters for ColorCorrectionModel @@ -101,13 +101,7 @@ Here are the parameters for ColorCorrectionModel ## Explanation -The first part is to detect the ColorChecker position. -@snippet samples/color_correction_model.cpp get_color_checker -@snippet samples/color_correction_model.cpp get_messages_of_image -Preparation for ColorChecker detection to get messages for the image. - -@snippet samples/color_correction_model.cpp create -The CCheckerDetectorobject is created and uses getListColorChecker function to get ColorChecker message. +The first part is to detect the ColorChecker position which can be done with the help of MCC module. @snippet samples/color_correction_model.cpp get_ccm_Matrix For every ColorChecker, we can compute a ccm matrix for color correction. Model1 is an object of ColorCorrectionModel class. The parameters should be changed to get the best effect of color correction. See other parameters' detail at the Parameters. diff --git a/modules/mcc/tutorials/basic_chart_detection/basic_chart_detection.markdown b/modules/mcc/tutorials/basic_chart_detection/basic_chart_detection.markdown deleted file mode 100644 index 6f9c8be4f70..00000000000 --- a/modules/mcc/tutorials/basic_chart_detection/basic_chart_detection.markdown +++ /dev/null @@ -1,97 +0,0 @@ -Detecting colorcheckers using basic algorithms{#tutorial_mcc_basic_chart_detection} -=========================== - -In this tutorial you will learn how to use the 'mcc' module to detect colorcharts in a image. -Here we will only use the basic detection algorithm. In the next tutorial you will see how you -can improve detection accuracy using a neural network. - -Building ----- - -When building OpenCV, run the following command to build all the contrib module: - -```make -cmake -D OPENCV_EXTRA_MODULES_PATH=/modules/ -``` - -Or only build the mcc module: - -```make -cmake -D OPENCV_EXTRA_MODULES_PATH=/modules/mcc -``` - -Or make sure you check the mcc module in the GUI version of CMake: cmake-gui. - -Source Code of the sample ------------ - -``` -run -/bin/example_mcc_chart_detection -t= -v= --ci= --nc= -``` - -* -t=# is the chart type where 0 (Standard), 1 (DigitalSG), 2 (Vinyl) -* --ci=# is the camera ID where 0 (default is the main camera), 1 (secondary camera) etc -* --nc=# By default its values is 1 which means only the best chart will be detected - -Examples: - -``` -Run a movie on a standard macbeth chart: -/home/opencv/build/bin/example_mcc_chart_detection -t=0 -v=mcc24.mp4 - -Or run on a vinyl macbeth chart from camera 0: -/home/opencv/build/bin/example_mcc_chart_detection -t=2 --ci=0 - -Or run on a vinyl macbeth chart, detecting the best 5 charts(Detections can be less than 5 but never more): -/home/opencv/build/bin/example_mcc_chart_detection -t=2 --ci=0 --nc=5 - -``` - - -@includelineno mcc/samples/chart_detection.cpp - -Explanation ------------ - --# **Set header and namespaces** - @code{.cpp} - #include - using namespace std; - using namespace cv; - using namespace mcc; - @endcode - - If you want you can set the namespace like the code above. --# **Create the detector object** - @code{.cpp} - Ptr detector = CCheckerDetector::create(); - @endcode - - This is just to create the object. --# **Run the detector** - @code{.cpp} - detector->process(image, chartType); - @endcode - - If the detector successfully detects atleast one chart, it return true otherwise it returns false. In the above given code we print a failure message if no chart were detected. Otherwise if it were successful, the list of colorcharts is stored inside the detector itself, we will see in the next step on how to extract it. By default it will detect atmost one chart, but you can tune the third parameter, nc(maximum number of charts), for detecting more charts. --# **Get List of ColorCheckers** - @code{.cpp} - std::vector> checkers; - detector->getListColorChecker(checkers); - @endcode - - All the colorcheckers that were detected are now stored in the 'checkers' vector. - --# **Draw the colorcheckers back to the image** - @code{.cpp} - - for(Ptr checker : checkers) - { - // current checker - Ptr cdraw = CCheckerDraw::create(checker); - cdraw->draw(image); - } - @endcode - - Loop through all the checkers one by one and then draw them. diff --git a/modules/mcc/tutorials/basic_chart_detection/chart_detection_enhanced_by_neural_network.markdown b/modules/mcc/tutorials/basic_chart_detection/chart_detection_enhanced_by_neural_network.markdown deleted file mode 100644 index 0c6f3fc3808..00000000000 --- a/modules/mcc/tutorials/basic_chart_detection/chart_detection_enhanced_by_neural_network.markdown +++ /dev/null @@ -1,114 +0,0 @@ -Detecting colorcheckers using neural network{#tutorial_mcc_chart_detection_enhanced_by_neural_network} -=========================== - -In this tutorial you will learn how to use the neural network to boost up the accuracy of the chart detection algorithm. - -Building ----- - -When building OpenCV, run the following command to build all the contrib module: - -```make -cmake -D OPENCV_EXTRA_MODULES_PATH=/modules/ -``` - -Or only build the mcc module: - -```make -cmake -D OPENCV_EXTRA_MODULES_PATH=/modules/mcc -``` - -Or make sure you check the mcc module in the GUI version of CMake: cmake-gui. - -Source Code of the sample ------------ - -You can run the sample code by doing - -```run -/bin/example_mcc_chart_detection_with_network -t= -m= -pb= -v= --ci= --nc= --use_gpu - -``' - -* -t=# is the chart type where 0 (Standard), 1 (DigitalSG), 2 (Vinyl) -* --ci=# is the camera ID where 0 (default is the main camera), 1 (secondary camera) etc -* --nc=# By default its values is 1 which means only the best chart will be detected - -Example: - -``` -Simple run on CPU (GPU wont be used) -/home/opencv/build/bin/example_mcc_chart_detection_with_network -t=0 -m=/home/model.pb --pb=/home/model.pbtxt -v=mcc24.mp4 -``` - -``` -To run on GPU -/home/opencv/build/bin/example_mcc_chart_detection_with_network -t=0 -m=/home/model.pb --pb=/home/model.pbtxt -v=mcc24.mp4 --use_gpu - -To run on GPU and detect the best 5 charts (Detections can be less than 5 but not more than 5) -/home/opencv/build/bin/example_mcc_chart_detection_with_network -t=0 -m=/home/model.pb --pb=/home/model.pbtxt -v=mcc24.mp4 --use_gpu --nc=5 -``` - -@includelineno mcc/samples/chart_detection_with_network.cpp - - -Explanation ------------ - --# **Set header and namespaces** - @code{.cpp} - #include - using namespace std; - using namespace cv; - using namespace mcc; - @endcode - - If you want you can set the namespace like the code above. --# **Create the detector object** - @code{.cpp} - Ptr detector = CCheckerDetector::create(); - @endcode - - This is just to create the object. - --# **Load the model** - @code{.cpp} - cv::dnn::Net net = cv::dnn::readNetFromTensorflow(model_path, pbtxt_path); - - @endcode - - Load the model, here the model supplied with model was trained in tensorflow so we are loading it in tensorflow, but if you have some other model trained in some other framework you can use that also. - --# **(Optional) Set the dnn backend to CUDA** - @code{.cpp} - net.setPreferableBackend(dnn::DNN_BACKEND_CUDA); - net.setPreferableTarget(dnn::DNN_TARGET_CUDA); - @endcode - - Models run much faster on CUDA, so use CUDA if possible. --# **Run the detector** - @code{.cpp} - detector->process(image, chartType, max_number_charts_in_image, true); - @endcode - - If the detector successfully detects atleast one chart, it return true otherwise it returns false. In the above given code we print a failure message if no chart were detected. Otherwise if it were successful, the list of colorcharts is stored inside the detector itself, we will see in the next step on how to extract it. The fourth parameter is for deciding whether to use the net or not. --# **Get List of ColorCheckers** - @code{.cpp} - std::vector> checkers; - detector->getListColorChecker(checkers); - @endcode - - All the colorcheckers that were detected are now stored in the 'checkers' vector. - --# **Draw the colorcheckers back to the image** - @code{.cpp} - - for(Ptr checker : checkers) - { - // current checker - Ptr cdraw = CCheckerDraw::create(checker); - cdraw->draw(image); - } - @endcode - - Loop through all the checkers one by one and then draw them. diff --git a/modules/mcc/tutorials/basic_chart_detection/debugging_the_system.markdown b/modules/mcc/tutorials/basic_chart_detection/debugging_the_system.markdown deleted file mode 100644 index dcd9f78aadd..00000000000 --- a/modules/mcc/tutorials/basic_chart_detection/debugging_the_system.markdown +++ /dev/null @@ -1,39 +0,0 @@ -Customising and Debugging the detection system{#tutorial_mcc_debugging_the_system} -=========================== - -There are many hyperparameters that are involved in the detection of a chart.The default values are chosen to maximize the detections in the average case. But these might not be best for your use case.These values can be configured to improve the accuracy for a particular use case. To do this, you would need to create an -instance of `DetectorParameters`. - -``` - mcc::Ptr params = mcc::DetectorParameters::create(); -``` -* `mcc::` is important. - -It contains a lot of values, the complete list can be found in the documentation for `DetectorParameters`. For this tutorial we will be playing with the value of `maxError`. The other values can be configured similarly. - -`maxError` controls how much error is allowed in detection. Like if some chart cell is occluded. It will increase the error. The default value allows some level of tolerance to occlusions, increasing(or decreasing) `maxError`, will increase(or decrease) this tolerance. - -You can change its value simply like this. - -``` - params->maxError = 0.5; -``` - -To use this in the detection system, you would need to pass it to the process function. - -``` - Ptr detector = CCheckerDetector::create(); - detector->process(image, chartType, params = params); -``` - -Thats how easy is it to play with the values. But there is a catch, there are a lot of parts in the detection pipeline. If you simply run it like this you would not be able to see the effect of this change in isolation. It is possible that the preceding parts detected no possible colorchecker candidates, and so changing the value of `maxError` will have no effect. Luckily OpenCV provides a solution for this. You can make the code output a multiple images, each one showing the effect of one part of the pipeling. This is disabled by default. - -* This can only be used if you are compiling from sources. If you can't build from souces, and still need this feature,try raising as issue in the OpenCV repo. - -To do this : Open the file `opencv_contrib/modules/mcc/include/opencv2/mcc/checker_detector.hpp`, near the top there is this line - -``` -// #define MCC_DEBUG -``` - -Uncomment this line and rebuild opencv. After this whenever you run the detector, It will show you multiple images, each corresponding to a part of the pipeline. Also you might see some repetetions like first you will see `Thresholding Output`, then some more images, and again `Thresholding Output` corresponding to same image, but slightly different from previous one, it is because internally the image is thesholded multiple times, with different parameters to adjust for different possible sizes of the colorchecker. diff --git a/modules/mcc/tutorials/table_of_content_mcc.markdown b/modules/mcc/tutorials/table_of_content_mcc.markdown deleted file mode 100644 index 46c4c91a6bd..00000000000 --- a/modules/mcc/tutorials/table_of_content_mcc.markdown +++ /dev/null @@ -1,20 +0,0 @@ -ColorChecker Detection {#tutorial_table_of_content_mcc} -=========================== - -- @subpage tutorial_mcc_basic_chart_detection - - *Author:* Ajit Pant - - How to detect the colorcheckers in a image, using basic detection algorithm. - -- @subpage tutorial_mcc_chart_detection_enhanced_by_neural_network - - *Author:* Ajit Pant - - Boosting up the detection accuracy by using a neural network. - -- @subpage tutorial_mcc_debugging_the_system - - *Author:* Ajit Pant - - How to configure the hyperparameters.