You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Using Google Colab
This issue occurs with the A100 GPU, L4 GPU, T4 GPU and TPU v2-8
Everything works as normal (however slower) with the regular CPU runtime
in GeoSAM(image_path, output_path)
16
17 if sam_version == 1:
---> 18 sam.generate(image, output="masks.tif", foreground=True, unique=True)
19 sam.tiff_to_vector("masks.tif", output_path)
20
/usr/local/lib/python3.10/dist-packages/samgeo/samgeo.py in generate(self, source, output, foreground, batch, batch_sample_size, batch_nodata_threshold, nodata_value, erosion_kernel, mask_multiplier, unique, **kwargs)
219 self.image = image # Store the input image as a numpy array
220 mask_generator = self.mask_generator # The automatic mask generator
--> 221 masks = mask_generator.generate(image) # Segment the input image
222 self.masks = masks # Store the masks as a list of dictionaries
223 self.batch = False
Using Google Colab
This issue occurs with the A100 GPU, L4 GPU, T4 GPU and TPU v2-8
Everything works as normal (however slower) with the regular CPU runtime
###########################################
sam.generate(image, output="masks.tif", foreground=True, unique=True)
delivers the TypeError: Got unsupported ScalarType BFloat16
###########################################
TypeError Traceback (most recent call last)
in <cell line: 34>()
32
33 # Perform segmentation
---> 34 GeoSAM(input_path, output_path)
5 frames
in GeoSAM(image_path, output_path)
16
17 if sam_version == 1:
---> 18 sam.generate(image, output="masks.tif", foreground=True, unique=True)
19 sam.tiff_to_vector("masks.tif", output_path)
20
/usr/local/lib/python3.10/dist-packages/samgeo/samgeo.py in generate(self, source, output, foreground, batch, batch_sample_size, batch_nodata_threshold, nodata_value, erosion_kernel, mask_multiplier, unique, **kwargs)
219 self.image = image # Store the input image as a numpy array
220 mask_generator = self.mask_generator # The automatic mask generator
--> 221 masks = mask_generator.generate(image) # Segment the input image
222 self.masks = masks # Store the masks as a list of dictionaries
223 self.batch = False
/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py in decorate_context(*args, **kwargs)
114 def decorate_context(*args, **kwargs):
115 with ctx_factory():
--> 116 return func(*args, **kwargs)
117
118 return decorate_context
/usr/local/lib/python3.10/dist-packages/segment_anything/automatic_mask_generator.py in generate(self, image)
161
162 # Generate masks
--> 163 mask_data = self._generate_masks(image)
164
165 # Filter small disconnected regions and holes in masks
/usr/local/lib/python3.10/dist-packages/segment_anything/automatic_mask_generator.py in _generate_masks(self, image)
220 data.filter(keep_by_nms)
221
--> 222 data.to_numpy()
223 return data
224
/usr/local/lib/python3.10/dist-packages/segment_anything/utils/amg.py in to_numpy(self)
73 for k, v in self._stats.items():
74 if isinstance(v, torch.Tensor):
---> 75 self._stats[k] = v.detach().cpu().numpy()
76
77
TypeError: Got unsupported ScalarType BFloat16
The text was updated successfully, but these errors were encountered: