Skip to content

Commit 1b811c2

Browse files
committed
Merge branch '2025.3' into copilot/fix-401bb8d6-d096-4a3e-b54b-2bccb42bee6d
2 parents 7ccf325 + ae4b0d9 commit 1b811c2

File tree

71 files changed

+548
-241
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

71 files changed

+548
-241
lines changed

.github/workflows/deploy.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -93,7 +93,7 @@ jobs:
9393
GPG_PRIVATE_KEY: ${{ secrets.GPG_PRIVATE_KEY }}
9494
- name: Publish package
9595
run: |
96-
mvn --batch-mode -pl turing-commons,turing-java-sdk -P release -am deploy -Dgpg.passphrase="${GPG_PASSPHRASE}"
96+
mvn --batch-mode -pl turing-commons,turing-java-sdk,turing-aem-commons -P release -am deploy -Dgpg.passphrase="${GPG_PASSPHRASE}"
9797
# cd turing-js-sdk/js-sdk-lib
9898
# npm publish
9999
env:

agents.md

Lines changed: 334 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,334 @@
1+
# AI Agents and Turing: Enterprise Search Intelligence Platform
2+
3+
## Overview
4+
5+
Viglet Turing is a comprehensive **Enterprise Search Intelligence Platform** that serves as an ideal foundation for AI agent systems focused on enterprise search and knowledge discovery. By combining semantic navigation, generative AI capabilities, and advanced search technologies, Turing provides the infrastructure needed for intelligent agents to interact with and understand enterprise content at scale.
6+
7+
## Why Turing for AI Agent Research?
8+
9+
### 1. **Semantic Understanding Foundation**
10+
- **Semantic Navigation**: Advanced content understanding beyond keyword matching
11+
- **Contextual Search**: AI agents can leverage contextual relationships between documents
12+
- **Multi-language Support**: Global enterprise content accessibility
13+
- **Intelligent Indexing**: Automatic content classification and relationship mapping
14+
15+
### 2. **Generative AI Integration**
16+
- **LangChain4j Integration**: Built-in support for modern AI frameworks
17+
- **RAG (Retrieval-Augmented Generation)**: Combines search with generative AI
18+
- **Vector Embeddings**: Semantic similarity search capabilities
19+
- **Conversational AI**: Chat-based interfaces for natural language queries
20+
21+
### 3. **Enterprise-Scale Architecture**
22+
- **Distributed Search**: Apache Solr backend with horizontal scaling
23+
- **Microservices Design**: Spring Boot architecture for modular AI agent development
24+
- **MCP Server**: Model Context Protocol implementation for AI model integration
25+
- **Real-time Processing**: Apache Artemis for asynchronous AI workflows
26+
27+
## AI Agent Capabilities Enabled by Turing
28+
29+
### Knowledge Discovery Agents
30+
Turing enables AI agents that can:
31+
- **Autonomous Content Discovery**: Automatically crawl and index enterprise content
32+
- **Semantic Content Classification**: Use AI to categorize and tag documents intelligently
33+
- **Cross-Source Knowledge Synthesis**: Combine information from multiple enterprise systems
34+
- **Intelligent Content Recommendations**: Suggest relevant content based on user behavior and context
35+
36+
### Conversational Search Agents
37+
- **Natural Language Query Processing**: Transform user questions into semantic search queries
38+
- **Context-Aware Responses**: Maintain conversation history and context
39+
- **Multi-turn Conversations**: Handle complex, multi-step information requests
40+
- **Personalized Results**: Adapt responses based on user roles and permissions
41+
42+
### Enterprise Integration Agents
43+
- **CMS Integration**: Automated content extraction from Adobe AEM, WordPress, and other CMS platforms
44+
- **Database Query Agents**: Intelligent database search across MySQL, PostgreSQL, Oracle, SQL Server
45+
- **File System Intelligence**: Smart document analysis and content extraction
46+
- **API Orchestration**: Coordinate multiple enterprise APIs through intelligent workflows
47+
48+
## Technical Architecture for AI Agents
49+
50+
### Core Components Supporting AI Agents
51+
52+
```mermaid
53+
graph TB
54+
A[AI Agent Layer] --> B[Turing MCP Server]
55+
A --> C[Generative AI Module]
56+
B --> D[Semantic Search Engine]
57+
C --> E[LangChain4j Framework]
58+
D --> F[Apache Solr]
59+
E --> G[Vector Embeddings]
60+
F --> H[Enterprise Content Sources]
61+
G --> I[RAG Pipeline]
62+
H --> J[CMS/DB/Files]
63+
```
64+
65+
### Key Technologies
66+
- **Spring Boot 3.2+**: Microservices foundation for AI agent development
67+
- **Java 21**: Modern language features for AI algorithm implementation
68+
- **LangChain4j**: AI/ML framework integration
69+
- **Apache Solr**: High-performance search engine
70+
- **Apache Artemis**: Message queue for asynchronous AI processing
71+
- **React + TypeScript**: Modern UI for AI agent interfaces
72+
- **Docker & Kubernetes**: Containerized deployment for scalable AI workloads
73+
74+
## SDK and API Support for Agent Development
75+
76+
### Java SDK for AI Agents
77+
```java
78+
// Example: AI Agent using Turing Java SDK
79+
HttpTurSNServer turSNServer = new HttpTurSNServer("http://localhost:2700/api/sn/MySite");
80+
81+
// Semantic search query from AI agent
82+
TurSNQuery query = new TurSNQuery();
83+
query.setQuery("artificial intelligence best practices");
84+
query.setRows(10);
85+
query.setSemanticSearch(true);
86+
87+
// Process results with AI context
88+
QueryTurSNResponse response = turSNServer.query(query);
89+
// AI agent can now process and synthesize results
90+
```
91+
92+
### JavaScript SDK for Web-based Agents
93+
```typescript
94+
// Example: Web-based AI Agent
95+
import { TurSNSiteSearchService } from '@openviglet/turing-js-sdk';
96+
97+
class AISearchAgent {
98+
private searchService: TurSNSiteSearchService;
99+
100+
constructor(baseURL: string) {
101+
this.searchService = new TurSNSiteSearchService(baseURL);
102+
}
103+
104+
async intelligentSearch(userQuery: string, context?: AgentContext) {
105+
const results = await this.searchService.search('enterprise-site', {
106+
q: userQuery,
107+
rows: 20,
108+
semanticSearch: true,
109+
localeRequest: context?.locale || 'en_US',
110+
});
111+
112+
return this.synthesizeResponse(results, context);
113+
}
114+
}
115+
```
116+
117+
### REST API for Agent Integration
118+
```bash
119+
# AI Agent making semantic search requests
120+
curl -X POST "http://localhost:2700/api/sn/enterprise-site/search" \
121+
-H "Content-Type: application/json" \
122+
-d '{
123+
"userId": "ai-agent-001",
124+
"query": "machine learning deployment strategies",
125+
"populateMetrics": true,
126+
"semanticSearch": true,
127+
"aiContext": {
128+
"conversationId": "conv-123",
129+
"userRole": "data-scientist"
130+
}
131+
}'
132+
```
133+
134+
### GraphQL for Complex Agent Queries
135+
```graphql
136+
query AIAgentComplexSearch($siteName: String!, $query: String!, $context: AgentContextInput) {
137+
siteSearch(siteName: $siteName, searchParams: {
138+
q: $query
139+
rows: 50
140+
semanticSearch: true
141+
aiEnhanced: true
142+
}, context: $context) {
143+
queryContext {
144+
count
145+
responseTime
146+
semanticScore
147+
}
148+
results {
149+
document {
150+
fields {
151+
title
152+
text
153+
url
154+
semanticRelevance
155+
aiClassification
156+
}
157+
aiSummary
158+
relatedConcepts
159+
}
160+
}
161+
aiInsights {
162+
topicClusters
163+
sentimentAnalysis
164+
knowledgeGaps
165+
}
166+
}
167+
}
168+
```
169+
170+
## Research Applications and Use Cases
171+
172+
### 1. **Enterprise Knowledge Management**
173+
- **Research Focus**: How AI agents can automatically organize and contextualize enterprise knowledge
174+
- **Turing Advantage**: Semantic navigation enables agents to understand document relationships
175+
- **Implementation**: [PLACEHOLDER - specific research methodologies and metrics]
176+
177+
### 2. **Intelligent Information Retrieval**
178+
- **Research Focus**: Beyond traditional search - understanding intent and context
179+
- **Turing Advantage**: Generative AI integration for query understanding and response synthesis
180+
- **Implementation**: [PLACEHOLDER - evaluation frameworks for search intelligence]
181+
182+
### 3. **Multi-Source Data Fusion**
183+
- **Research Focus**: How AI agents can synthesize information from disparate enterprise systems
184+
- **Turing Advantage**: Native connectors to CMS, databases, file systems
185+
- **Implementation**: [PLACEHOLDER - data fusion algorithms and evaluation metrics]
186+
187+
### 4. **Conversational Enterprise Search**
188+
- **Research Focus**: Natural language interfaces for complex enterprise queries
189+
- **Turing Advantage**: Built-in chatbot framework with context awareness
190+
- **Implementation**: [PLACEHOLDER - conversation flow optimization strategies]
191+
192+
## Deployment and Scalability for AI Workloads
193+
194+
### Container-Based Deployment
195+
```yaml
196+
# Docker Compose for AI Agent Development
197+
version: '3.8'
198+
services:
199+
turing-ai-platform:
200+
image: openviglet/turing:latest
201+
environment:
202+
- AI_ENABLED=true
203+
- LANGCHAIN_API_KEY=${LANGCHAIN_API_KEY}
204+
- VECTOR_STORE=chroma
205+
ports:
206+
- "2700:2700"
207+
depends_on:
208+
- turing-solr
209+
- turing-db
210+
- ai-vector-store
211+
```
212+
213+
### Kubernetes for Production AI Agents
214+
- **Horizontal Pod Autoscaling**: Scale AI workloads based on query load
215+
- **GPU Support**: Integration with CUDA for AI model processing
216+
- **Service Mesh**: Istio integration for AI agent communication
217+
- **[PLACEHOLDER - specific K8s configurations for AI workloads]**
218+
219+
## Performance Characteristics for AI Applications
220+
221+
### Search Performance
222+
- **Sub-second Response Times**: Critical for real-time AI agent interactions
223+
- **Concurrent Query Support**: Handle multiple AI agents simultaneously
224+
- **Semantic Query Optimization**: [PLACEHOLDER - specific optimization techniques]
225+
226+
### AI Processing Metrics
227+
- **Vector Embedding Performance**: [PLACEHOLDER - benchmarking data]
228+
- **RAG Pipeline Latency**: [PLACEHOLDER - performance characteristics]
229+
- **Model Inference Times**: [PLACEHOLDER - GPU vs CPU performance]
230+
231+
## Integration with AI/ML Frameworks
232+
233+
### Supported AI Frameworks
234+
- **LangChain4j**: Primary integration for AI agent development
235+
- **Spring AI**: Enterprise AI application development
236+
- **[PLACEHOLDER - other supported frameworks like Hugging Face, OpenAI API]**
237+
238+
### Model Integration
239+
- **Local Model Support**: Run AI models within the Turing infrastructure
240+
- **Cloud API Integration**: Connect to OpenAI, Claude, Gemini APIs
241+
- **Custom Model Deployment**: [PLACEHOLDER - guidelines for custom model integration]
242+
243+
## Research Data and Benchmarks
244+
245+
### Performance Benchmarks
246+
- **Search Accuracy**: [PLACEHOLDER - precision/recall metrics]
247+
- **Response Time**: [PLACEHOLDER - latency distributions]
248+
- **Scalability Metrics**: [PLACEHOLDER - concurrent user/agent limits]
249+
250+
### Research Datasets
251+
- **Enterprise Content Corpora**: [PLACEHOLDER - anonymized datasets for research]
252+
- **Query Logs**: [PLACEHOLDER - search behavior analysis data]
253+
- **Evaluation Frameworks**: [PLACEHOLDER - standardized evaluation methodologies]
254+
255+
## Security and Privacy for AI Agents
256+
257+
### Enterprise Security Features
258+
- **Authentication**: Keycloak integration for AI agent identity management
259+
- **Authorization**: Role-based access control for AI agent permissions
260+
- **Audit Logging**: Track AI agent actions and data access
261+
- **Data Privacy**: [PLACEHOLDER - GDPR/privacy compliance features]
262+
263+
### AI-Specific Security
264+
- **Model Security**: Prevent AI model poisoning and adversarial attacks
265+
- **Data Isolation**: Ensure AI agents only access authorized content
266+
- **[PLACEHOLDER - additional AI security measures]**
267+
268+
## Community and Collaboration
269+
270+
### Research Collaboration Opportunities
271+
- **Open Source**: Apache 2.0 license enables research collaboration
272+
- **Academic Partnerships**: [PLACEHOLDER - university collaboration programs]
273+
- **Research Publication Support**: [PLACEHOLDER - data sharing and publication policies]
274+
275+
### Developer Community
276+
- **GitHub**: https://github.com/openviglet/turing
277+
- **Discussions**: https://github.com/openviglet/turing/discussions
278+
- **Documentation**: https://docs.viglet.org/turing/
279+
- **[PLACEHOLDER - research-specific community channels]**
280+
281+
## Future Roadmap for AI Agent Capabilities
282+
283+
### Planned AI Features
284+
- **Advanced Semantic Understanding**: [PLACEHOLDER - upcoming semantic AI features]
285+
- **Multi-modal Search**: Support for image, video, and audio content analysis
286+
- **Federated Learning**: Distributed AI model training across enterprise sites
287+
- **[PLACEHOLDER - other roadmap items]**
288+
289+
### Research Integration Roadmap
290+
- **Academic Research APIs**: Specialized endpoints for research applications
291+
- **Benchmark Suite**: Standardized evaluation tools for enterprise search AI
292+
- **[PLACEHOLDER - specific research collaboration plans]**
293+
294+
## Getting Started with AI Agent Development
295+
296+
### Quick Start for Researchers
297+
```bash
298+
# Clone and setup for AI research
299+
git clone https://github.com/openviglet/turing.git
300+
cd turing
301+
302+
# Enable AI features
303+
export AI_ENABLED=true
304+
export LANGCHAIN_API_KEY=your_api_key
305+
306+
# Start with AI capabilities
307+
docker-compose -f docker-compose.ai.yml up -d
308+
309+
# Access research APIs at http://localhost:2700/api/ai/
310+
```
311+
312+
### Development Environment Setup
313+
1. **Prerequisites**: Java 21+, Docker, AI model access
314+
2. **Configuration**: [PLACEHOLDER - detailed AI setup instructions]
315+
3. **First AI Agent**: [PLACEHOLDER - tutorial for building first agent]
316+
317+
### Research Support
318+
- **Technical Documentation**: [PLACEHOLDER - research-specific documentation links]
319+
- **Sample Datasets**: [PLACEHOLDER - research dataset access]
320+
- **Support Channels**: [PLACEHOLDER - research support contacts]
321+
322+
## Conclusion
323+
324+
Viglet Turing provides a comprehensive foundation for AI agent research in enterprise search environments. Its combination of semantic search capabilities, generative AI integration, and enterprise-grade architecture makes it an ideal platform for advancing the state of the art in intelligent information retrieval and knowledge management systems.
325+
326+
The platform's open-source nature, comprehensive APIs, and scalable architecture provide researchers with the tools needed to develop, test, and deploy sophisticated AI agents that can transform how organizations interact with their knowledge assets.
327+
328+
---
329+
330+
*For research collaborations, technical questions, or contribution opportunities, please contact: [PLACEHOLDER - research contact information]*
331+
332+
**License**: Apache 2.0 - enabling open research and collaboration
333+
**Repository**: https://github.com/openviglet/turing
334+
**Documentation**: https://docs.viglet.org/turing/

0 commit comments

Comments
 (0)