-
Notifications
You must be signed in to change notification settings - Fork 849
/
Copy pathdataframe_pandas.py
102 lines (83 loc) · 3.25 KB
/
dataframe_pandas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# -----------------------------------------------------------------------------
# Copyright (c) 2025, Oracle and/or its affiliates.
#
# This software is dual-licensed to you under the Universal Permissive License
# (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl and Apache License
# 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose
# either license.
#
# If you elect to accept the software under the Apache License, Version 2.0,
# the following applies:
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
# dataframe_pandas.py
#
# Shows how to use connection.fetch_df_all() and connection.fetch_df_batches()
# to create Pandas dataframes.
# -----------------------------------------------------------------------------
import pandas
import pyarrow
import oracledb
import sample_env
# determine whether to use python-oracledb thin mode or thick mode
if not sample_env.get_is_thin():
oracledb.init_oracle_client(lib_dir=sample_env.get_oracle_client())
connection = oracledb.connect(
user=sample_env.get_main_user(),
password=sample_env.get_main_password(),
dsn=sample_env.get_connect_string(),
params=sample_env.get_connect_params(),
)
SQL = "select id, name from SampleQueryTab order by id"
# -----------------------------------------------------------------------------
#
# Fetching all records
# Get an OracleDataFrame.
# Adjust arraysize to tune the query fetch performance
odf = connection.fetch_df_all(statement=SQL, arraysize=100)
# Get a Pandas DataFrame from the data
df = pyarrow.Table.from_arrays(
odf.column_arrays(), names=odf.column_names()
).to_pandas()
# Perform various Pandas operations on the DataFrame
print("Columns:")
print(df.columns)
print("\nDataframe description:")
print(df.describe())
print("\nLast three rows:")
print(df.tail(3))
print("\nTransform:")
print(df.T)
# -----------------------------------------------------------------------------
#
# Batch record fetching
#
# Note that since this particular example ends up with all query rows being
# held in memory, it would be more efficient to use fetch_df_all() as shown
# above.
print("\nFetching in batches:")
df = pandas.DataFrame()
# Tune 'size' for your data set. Here it is small to show the batch fetch
# behavior on the sample table.
for odf in connection.fetch_df_batches(statement=SQL, size=10):
df_b = pyarrow.Table.from_arrays(
odf.column_arrays(), names=odf.column_names()
).to_pandas()
print(f"Appending {df_b.shape[0]} rows")
df = pandas.concat([df, df_b], ignore_index=True)
r, c = df.shape
print(f"{r} rows, {c} columns")
print("\nLast three rows:")
print(df.tail(3))