-
Notifications
You must be signed in to change notification settings - Fork 849
/
Copy pathdataframe_parquet_write.py
87 lines (68 loc) · 2.82 KB
/
dataframe_parquet_write.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# -----------------------------------------------------------------------------
# Copyright (c) 2025, Oracle and/or its affiliates.
#
# This software is dual-licensed to you under the Universal Permissive License
# (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl and Apache License
# 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose
# either license.
#
# If you elect to accept the software under the Apache License, Version 2.0,
# the following applies:
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
# dataframe_parquet_write.py
#
# Shows how to use connection.fetch_df_batches() to write files in Parquet
# format.
# -----------------------------------------------------------------------------
import os
import pyarrow
import pyarrow.parquet as pq
import oracledb
import sample_env
# determine whether to use python-oracledb thin mode or thick mode
if not sample_env.get_is_thin():
oracledb.init_oracle_client(lib_dir=sample_env.get_oracle_client())
connection = oracledb.connect(
user=sample_env.get_main_user(),
password=sample_env.get_main_password(),
dsn=sample_env.get_connect_string(),
params=sample_env.get_connect_params(),
)
PARQUET_FILE_NAME = "sample.parquet"
if os.path.isfile(PARQUET_FILE_NAME):
os.remove(PARQUET_FILE_NAME)
# Tune this for your query
FETCH_BATCH_SIZE = 10
SQL = "select id, name from SampleQueryTab order by id"
pqwriter = None
for odf in connection.fetch_df_batches(statement=SQL, size=FETCH_BATCH_SIZE):
pyarrow_table = pyarrow.Table.from_arrays(
arrays=odf.column_arrays(), names=odf.column_names()
)
if not pqwriter:
pqwriter = pq.ParquetWriter(PARQUET_FILE_NAME, pyarrow_table.schema)
print(f"Writing a batch of {odf.num_rows()} rows")
pqwriter.write_table(pyarrow_table)
pqwriter.close()
# -----------------------------------------------------------------------------
# Check the file was created
print("\nParquet file metadata:")
print(pq.read_metadata(PARQUET_FILE_NAME))
# -----------------------------------------------------------------------------
# Read the file
print("\nParquet file data:")
t = pq.read_table(PARQUET_FILE_NAME, columns=["ID", "NAME"])
print(t)