|
| 1 | +# coding: utf-8 |
| 2 | +# Copyright (c) 2016, 2024, Oracle and/or its affiliates. All rights reserved. |
| 3 | +# This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. |
| 4 | + |
| 5 | +"""This module contains the custom LLM client for AutoGen v0.2 to use LangChain chat models. |
| 6 | +https://microsoft.github.io/autogen/0.2/blog/2024/01/26/Custom-Models/ |
| 7 | +
|
| 8 | +To use the custom client: |
| 9 | +1. Prepare the LLM config, including the parameters for initializing the LangChain client. |
| 10 | +2. Register the custom LLM |
| 11 | +
|
| 12 | +The LLM config should config the following keys: |
| 13 | +* model_client_cls: Required by AutoGen to identify the custom client. It should be "LangChainModelClient" |
| 14 | +* langchain_cls: LangChain class including the full import path. |
| 15 | +* model: Name of the model to be used by AutoGen |
| 16 | +* client_params: A dictionary containing the parameters to initialize the LangChain chat model. |
| 17 | +
|
| 18 | +Although the `LangChainModelClient` is designed to be generic and can potentially support any LangChain chat model, |
| 19 | +the invocation depends on the server API spec and it may not be compatible with some implementations. |
| 20 | +
|
| 21 | +Following is an example config for OCI Generative AI service: |
| 22 | +{ |
| 23 | + "model_client_cls": "LangChainModelClient", |
| 24 | + "langchain_cls": "langchain_community.chat_models.oci_generative_ai.ChatOCIGenAI", |
| 25 | + "model": "cohere.command-r-plus", |
| 26 | + # client_params will be used to initialize the LangChain ChatOCIGenAI class. |
| 27 | + "client_params": { |
| 28 | + "model_id": "cohere.command-r-plus", |
| 29 | + "compartment_id": COMPARTMENT_OCID, |
| 30 | + "model_kwargs": {"temperature": 0, "max_tokens": 2048}, |
| 31 | + # Update the authentication method as needed |
| 32 | + "auth_type": "SECURITY_TOKEN", |
| 33 | + "auth_profile": "DEFAULT", |
| 34 | + # You may need to specify `service_endpoint` if the service is in a different region. |
| 35 | + }, |
| 36 | +} |
| 37 | +
|
| 38 | +Following is an example config for OCI Data Science Model Deployment: |
| 39 | +{ |
| 40 | + "model_client_cls": "LangChainModelClient", |
| 41 | + "langchain_cls": "ads.llm.ChatOCIModelDeploymentVLLM", |
| 42 | + "model": "odsc-llm", |
| 43 | + "endpoint": "https://MODEL_DEPLOYMENT_URL/predict", |
| 44 | + "model_kwargs": {"temperature": 0.1, "max_tokens": 2048}, |
| 45 | + # function_call_params will only be added to the API call when function/tools are added. |
| 46 | + "function_call_params": { |
| 47 | + "tool_choice": "auto", |
| 48 | + "chat_template": ChatTemplates.mistral(), |
| 49 | + }, |
| 50 | +} |
| 51 | +
|
| 52 | +Note that if `client_params` is not specified in the config, all arguments from the config except |
| 53 | +`model_client_cls` and `langchain_cls`, and `function_call_params`, will be used to initialize |
| 54 | +the LangChain chat model. |
| 55 | +
|
| 56 | +The `function_call_params` will only be used for function/tool calling when tools are specified. |
| 57 | +
|
| 58 | +To register the custom client: |
| 59 | +
|
| 60 | +from ads.llm.autogen.client_v02 import LangChainModelClient, register_custom_client |
| 61 | +register_custom_client(LangChainModelClient) |
| 62 | +
|
| 63 | +Once registered with ADS, the custom LLM class will be auto-registered for all new agents. |
| 64 | +There is no need to call `register_model_client()` on each agent. |
| 65 | +
|
| 66 | +References: |
| 67 | +https://microsoft.github.io/autogen/0.2/docs/notebooks/agentchat_huggingface_langchain/ |
| 68 | +https://github.com/microsoft/autogen/blob/0.2/notebook/agentchat_custom_model.ipynb |
| 69 | +
|
| 70 | +""" |
| 71 | +import copy |
| 72 | +import importlib |
| 73 | +import json |
| 74 | +import logging |
| 75 | +from typing import Any, Dict, List, Union |
| 76 | +from types import SimpleNamespace |
| 77 | + |
| 78 | +from autogen import ModelClient |
| 79 | +from autogen.oai.client import OpenAIWrapper, PlaceHolderClient |
| 80 | +from langchain_core.messages import AIMessage |
| 81 | + |
| 82 | + |
| 83 | +logger = logging.getLogger(__name__) |
| 84 | + |
| 85 | +# custom_clients is a dictionary mapping the name of the class to the actual class |
| 86 | +custom_clients = {} |
| 87 | + |
| 88 | +# There is a bug in GroupChat when using custom client: |
| 89 | +# https://github.com/microsoft/autogen/issues/2956 |
| 90 | +# Here we will be patching the OpenAIWrapper to fix the issue. |
| 91 | +# With this patch, you only need to register the client once with ADS. |
| 92 | +# For example: |
| 93 | +# |
| 94 | +# from ads.llm.autogen.client_v02 import LangChainModelClient, register_custom_client |
| 95 | +# register_custom_client(LangChainModelClient) |
| 96 | +# |
| 97 | +# This patch will auto-register the custom LLM to all new agents. |
| 98 | +# So there is no need to call `register_model_client()` on each agent. |
| 99 | +OpenAIWrapper._original_register_default_client = OpenAIWrapper._register_default_client |
| 100 | + |
| 101 | + |
| 102 | +def _new_register_default_client( |
| 103 | + self: OpenAIWrapper, config: Dict[str, Any], openai_config: Dict[str, Any] |
| 104 | +) -> None: |
| 105 | + """This is a patched version of the _register_default_client() method |
| 106 | + to automatically register custom client for agents. |
| 107 | + """ |
| 108 | + model_client_cls_name = config.get("model_client_cls") |
| 109 | + if model_client_cls_name in custom_clients: |
| 110 | + self._clients.append(PlaceHolderClient(config)) |
| 111 | + self.register_model_client(custom_clients[model_client_cls_name]) |
| 112 | + else: |
| 113 | + self._original_register_default_client( |
| 114 | + config=config, openai_config=openai_config |
| 115 | + ) |
| 116 | + |
| 117 | + |
| 118 | +# Patch the _register_default_client() method |
| 119 | +OpenAIWrapper._register_default_client = _new_register_default_client |
| 120 | + |
| 121 | + |
| 122 | +def register_custom_client(client_class): |
| 123 | + """Registers custom client for AutoGen.""" |
| 124 | + if client_class.__name__ not in custom_clients: |
| 125 | + custom_clients[client_class.__name__] = client_class |
| 126 | + |
| 127 | + |
| 128 | +def _convert_to_langchain_tool(tool): |
| 129 | + """Converts the OpenAI tool spec to LangChain tool spec.""" |
| 130 | + if tool["type"] == "function": |
| 131 | + tool = tool["function"] |
| 132 | + required = tool["parameters"].get("required", []) |
| 133 | + properties = copy.deepcopy(tool["parameters"]["properties"]) |
| 134 | + for key in properties.keys(): |
| 135 | + val = properties[key] |
| 136 | + val["default"] = key in required |
| 137 | + return { |
| 138 | + "title": tool["name"], |
| 139 | + "description": tool["description"], |
| 140 | + "properties": properties, |
| 141 | + } |
| 142 | + raise NotImplementedError(f"Type {tool['type']} is not supported.") |
| 143 | + |
| 144 | + |
| 145 | +def _convert_to_openai_tool_call(tool_call): |
| 146 | + """Converts the LangChain tool call in AI message to OpenAI tool call.""" |
| 147 | + return { |
| 148 | + "id": tool_call.get("id"), |
| 149 | + "function": { |
| 150 | + "name": tool_call.get("name"), |
| 151 | + "arguments": ( |
| 152 | + "" |
| 153 | + if tool_call.get("args") is None |
| 154 | + else json.dumps(tool_call.get("args")) |
| 155 | + ), |
| 156 | + }, |
| 157 | + "type": "function", |
| 158 | + } |
| 159 | + |
| 160 | + |
| 161 | +class Message(AIMessage): |
| 162 | + """Represents message returned from the LLM.""" |
| 163 | + |
| 164 | + @classmethod |
| 165 | + def from_message(cls, message: AIMessage): |
| 166 | + """Converts from LangChain AIMessage.""" |
| 167 | + message = copy.deepcopy(message) |
| 168 | + message.__class__ = cls |
| 169 | + message.tool_calls = [ |
| 170 | + _convert_to_openai_tool_call(tool) for tool in message.tool_calls |
| 171 | + ] |
| 172 | + return message |
| 173 | + |
| 174 | + @property |
| 175 | + def function_call(self): |
| 176 | + """Function calls.""" |
| 177 | + return self.tool_calls |
| 178 | + |
| 179 | + |
| 180 | +class LangChainModelClient(ModelClient): |
| 181 | + """Represents a model client wrapping a LangChain chat model.""" |
| 182 | + |
| 183 | + def __init__(self, config: dict, **kwargs) -> None: |
| 184 | + super().__init__() |
| 185 | + logger.info("LangChain model client config: %s", str(config)) |
| 186 | + # Make a copy of the config since we are popping some keys |
| 187 | + config = copy.deepcopy(config) |
| 188 | + # model_client_cls will always be LangChainModelClient |
| 189 | + self.client_class = config.pop("model_client_cls") |
| 190 | + |
| 191 | + # model_name is used in constructing the response. |
| 192 | + self.model_name = config.get("model", "") |
| 193 | + |
| 194 | + # If the config specified function_call_params, |
| 195 | + # Pop the params and use them only for tool calling. |
| 196 | + self.function_call_params = config.pop("function_call_params", {}) |
| 197 | + |
| 198 | + # If the config specified invoke_params, |
| 199 | + # Pop the params and use them only for invoking. |
| 200 | + self.invoke_params = config.pop("invoke_params", {}) |
| 201 | + |
| 202 | + # Import the LangChain class |
| 203 | + if "langchain_cls" not in config: |
| 204 | + raise ValueError("Missing langchain_cls in LangChain Model Client config.") |
| 205 | + module_cls = config.pop("langchain_cls") |
| 206 | + module_name, cls_name = str(module_cls).rsplit(".", 1) |
| 207 | + langchain_module = importlib.import_module(module_name) |
| 208 | + langchain_cls = getattr(langchain_module, cls_name) |
| 209 | + |
| 210 | + # If the config specified client_params, |
| 211 | + # Only use the client_params to initialize the LangChain model. |
| 212 | + # Otherwise, use the config |
| 213 | + self.client_params = config.get("client_params", config) |
| 214 | + |
| 215 | + # Initialize the LangChain client |
| 216 | + self.model = langchain_cls(**self.client_params) |
| 217 | + |
| 218 | + def create(self, params) -> ModelClient.ModelClientResponseProtocol: |
| 219 | + """Creates a LLM completion for a given config. |
| 220 | +
|
| 221 | + Parameters |
| 222 | + ---------- |
| 223 | + params : dict |
| 224 | + OpenAI API compatible parameters, including all the keys from llm_config. |
| 225 | +
|
| 226 | + Returns |
| 227 | + ------- |
| 228 | + ModelClientResponseProtocol |
| 229 | + Response from LLM |
| 230 | +
|
| 231 | + """ |
| 232 | + streaming = params.get("stream", False) |
| 233 | + # TODO: num_of_responses |
| 234 | + num_of_responses = params.get("n", 1) |
| 235 | + messages = params.pop("messages", []) |
| 236 | + |
| 237 | + invoke_params = copy.deepcopy(self.invoke_params) |
| 238 | + |
| 239 | + tools = params.get("tools") |
| 240 | + if tools: |
| 241 | + model = self.model.bind_tools( |
| 242 | + [_convert_to_langchain_tool(tool) for tool in tools] |
| 243 | + ) |
| 244 | + # invoke_params["tools"] = tools |
| 245 | + invoke_params.update(self.function_call_params) |
| 246 | + else: |
| 247 | + model = self.model |
| 248 | + |
| 249 | + response = SimpleNamespace() |
| 250 | + response.choices = [] |
| 251 | + response.model = self.model_name |
| 252 | + |
| 253 | + if streaming and messages: |
| 254 | + # If streaming is enabled and has messages, then iterate over the chunks of the response. |
| 255 | + raise NotImplementedError() |
| 256 | + else: |
| 257 | + # If streaming is not enabled, send a regular chat completion request |
| 258 | + ai_message = model.invoke(messages, **invoke_params) |
| 259 | + choice = SimpleNamespace() |
| 260 | + choice.message = Message.from_message(ai_message) |
| 261 | + response.choices.append(choice) |
| 262 | + return response |
| 263 | + |
| 264 | + def message_retrieval( |
| 265 | + self, response: ModelClient.ModelClientResponseProtocol |
| 266 | + ) -> Union[List[str], List[ModelClient.ModelClientResponseProtocol.Choice.Message]]: |
| 267 | + """ |
| 268 | + Retrieve and return a list of strings or a list of Choice.Message from the response. |
| 269 | +
|
| 270 | + NOTE: if a list of Choice.Message is returned, it currently needs to contain the fields of OpenAI's ChatCompletion Message object, |
| 271 | + since that is expected for function or tool calling in the rest of the codebase at the moment, unless a custom agent is being used. |
| 272 | + """ |
| 273 | + return [choice.message for choice in response.choices] |
| 274 | + |
| 275 | + def cost(self, response: ModelClient.ModelClientResponseProtocol) -> float: |
| 276 | + response.cost = 0 |
| 277 | + return 0 |
| 278 | + |
| 279 | + @staticmethod |
| 280 | + def get_usage(response: ModelClient.ModelClientResponseProtocol) -> Dict: |
| 281 | + """Return usage summary of the response using RESPONSE_USAGE_KEYS.""" |
| 282 | + return {} |
0 commit comments